Scalable Graph-Based Learning Applied to Human Language Technology

Andrei Alexandrescu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2009

Program Authorized to Offer Degree: Computer Science & Engineering

University of Washington
Graduate School

This is to certify that | have examined this copy of a doctoral dissertation by

Andrei Alexandrescu

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final
examining committee have been made.

Chair of the Supervisory Committee:

Katrin Kirchhoff

Reading Committee:

Katrin Kirchhoff

Oren Etzioni

Jeffrey A. Bilmes

Date:

In presenting this dissertation in partial fulfilment of the requirements for twaodal degree at
the University of Washington, | agree that the Library shall make its cdpéedy available for
inspection. | further agree that extensive copying of this dissertatidioigable only for scholarly
purposes, consistent with “fair use” as prescribed in the U.S. Copyragh. Requests for copying
or reproduction of this dissertation may be referred to Proquest Infammand Learning, 300
North Zeeb Road, Ann Arbor, Ml 48106-1346, 1-800-521-0600ykmm the author has granted
“the right to reproduce and sell (a) copies of the manuscript in microordior (b) printed copies
of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Scalable Graph-Based Learning Applied to Human Languagertdagy

Andrei Alexandrescu

Chair of the Supervisory Committee:
Associate Research Professor Katrin Kirchhoff
Electrical Engineering

Graph-based semi-supervised learning techniques have recentlyeattirsareasing attention as a
means to utilize unlabeled data in machine learning by placing data points in a simitaty. g
However, applying graph-based semi-supervised learning to natungiidge processing tasks
presents unigue challenges. First, natural language features arelistteete and do not readily re-
veal an underlying manifold structure, which complicates the already eniggrizigh construction
process. Second, natural language processing problems oftetnucsered inputs and outputs that
do not naturally fit the graph-based framework. Finally, scalability isBoesapplicability to large
data sets, which are common even in modestly-sized natural languagesingcapplications. This
research investigates novel approaches to using graph-basedugpemiised learning techniques
for natural language processing, and addresses issues of digtaasare learning, scalability, and

structured inputs and outputs.

TABLE OF CONTENTS

Page
Listof Figures e %
Listof Tables e vii
Chapter 1: Introduction 1
1.1 Whatis Human Language Technology? 1
Chapter 2: Background e 7
2.1 Notational Aid e 7
2.2 Semi-SupervisedLearning e 9
23 Graph-BasedSSL 12
2.3.1 Graph-Based Learning Algorithms 13
2.3.2 LabelPropagation 13
2.3.3 lllustration 17
2.3.4 Cost Function for Label Propagation 19
2.3.5 Previous HLT Applications 20
2.3.6 AdvantagesandDisadvantages 1 2
Chapter 3: Graph Construction 23
3.1 Similarity e e e 23
3.2 Distancevs. Similarity 25
3.2.1 Distance Measures e 27
3.3 Data-Driven Graph Construction 28
3.4 Distance Measures for Probability Distributions 30
3.4.1 CosineDistance 31
3.4.2 BhattacharyyaDistance 31
3.4.3 TheHellingerDistance, 32
3.4.4 Kullback-Leibler Divergence (and Symmetrized Variant) 33
3.4.5 Jensen-Shannon (Symmetrized Smoothed Kullback-Leibler) Divegge. 34

3.5 Joint Optimization of the First- and Second-Pass Classifiers 34

3.5.1 Regularization of the First-Pass Classifier 4 3
3.5.2 Adding and Mixing In SynthesizedData. 35
3.6 Application: LexiconLearning 35
3.6.1 TheFirst-Pass Classifier 37
3.6.1.1 Theapproximationlayer 38
3.6.1.2 The discrete-to-continuous mappér 39
3.6.1.3 The nonlinear hidden layer and the output layer 41
3.6.1.4 MLPtraining 41
3.6.2 Graph-BasedLearnerSetup 2 4
3.6.3 Combination optimization 43
3.6.4 Results 43
3.7 Application: Word Sense Disambiguation: 4 4
3.7.1 SVMFirst-Pass ClassifierSetup 46
3.7.2 LabelPropagationSetup, 46
3.7.3 Combination Optimization a7
3.7.4 Results 47
3.8 Application: Acoustic Classification 8 4
3.8.1 Adaptation to Sample Size Discrepancy 52
3.8.2 Interpolation with Prior Distributions 54
383 Data. 55
3.8.4 ExperimentsandResults 56
3.9 Discussion of the Two-Pass Classifier Approach 56
Chapter 4: Graph-Based Learning for Structured Inputs and Outputs 59
4.1 Structured Inputsand Outputs 60
4.2 Graph-Based Semi-Supervised Formulation 62
4.2.1 Learning With Only Positive Examples 64
4.3 Similarity Functions for Structured Inputs and Outputs 69
4.3.1 KernelMethods 72
4.3.1.1 NormalizedKernels 74
4.3.1.2 Relationship with Distance 76
43.1.3 StringKernels 77
4.4 Structured Graph-Based Semi-Supervised Learning for Machamslation 81
4.4.1 Architecture of Contemporary Phrase-Based SMT Systems82

442 Phrase-Based Translation. 4 8

4.4.3 Log-LinearModels oo 85
4.4.3.1 Training Log-Linear Models forSMT 86
4.4.4 Constraining Translations for Consistency 87
4.4,5 Formulation of Structured Graph-Based Learning for Machineslation 89
4.4.6 Decomposing the Similarity Function into Partial Functions 91
4.4.7 Using the BEU Score as Sentence Similarity Measure 94
4.4.8 String Kernels as Sentence Similarity Measure 96
45 Experimental Setup 99
4.6 ExperimentsandResults 0 10
4.6.1 Experiments on Italian-to-English Translation UsingeB as Similarity
Measure e e e e 101
4.6.2 Experiments on Italian-to-English Translation Using the String Kernel . 101
4.6.3 Experiments on Arabic-to-English Translation 3 10
4.6.4 TranslatonExample 104
4.7 RelatedWork 105
Chapter 5: Scalability e 710
5.1 MONotoniCity e e e e e e e e 109
5.2 Stochastic Label Propagation 110
5.3 Applications of Stochastic Label Propagation 113
5.3.1 In-Place Label Propagation. 131
5.3.2 Multicore Label Propagation 116
5.4 Reducing the Number of Labeled Nodes inthe Graph119
5.5 Graph Reduction for Structured Inputs and Qutputs 121
5.6 Fast Graph Construction in Jensen-Shannon Space 122
5.6.1 Nearest Neighbor Searching 24 1
5.6.2 Using kd-trees in Jensen-Shannon Space 126
5.6.2.1 Buildingkd-trees o 127
5.6.2.2 Searchingakd-tree 130
5.6.2.3 Defining Core Routines. Distance Requirements 132
5.6.2.4 Adapting kd-tree Search to Jensen-Shannon Space 35. 1
5.7 Scalable Hyperparameter Tuning for the GaussianKernel 136
5.8 Speed Measurements for Unstructured Classification 138

5.9 Fast Graph Construction in String Spaces 139

5.9.1 Inverted Index 140

5.9.1.1 Normalization by StringLength 141
5.9.1.2 Algorithm for Approximating Most Similar Strings using an In-
vertedIndex 142
5.9.1.3 Loss of Inverted Index Compared to the Gapped String Kernel 5 14
5.9.2 Fast Cross-Product String Kernel Computation 148
593 CollectingResults e 152
594 Complexity 152
5.9.5 System-level Optimizations 153
5.9.6 Timing Measurements 154
5.9.7 Considerations on Parallelization 156
5.10 Batching via Path Closures for GBL with Structured Inputs and Outputs 157
Chapter 6: CoNncClusioNS 173
6.1 FutureDirections 517

Appendix A: Two Theoretical Bounds for Speed of Convergence lreL®ropagation. . 177

Appendix B: Exponential Speedup of Label Propagation 181

LIST OF FIGURES

Figure Number Page

2.1

3.1

3.2

3.3

4.1

4.2

5.1
5.2

A graph for a binary classification problem before and after latogigmyation. The
labels are encoded as white)(and black ¢), and all edges have unit weight.
The process assigns labels to unlabeled nodes depending on theictcomnevith
neighboring nodes—shades of grey represent different probabifiiethe label
assignment. By virtue of the global connectivity properties, unlabeledswateive
labels even when they are not directly connected to any labeled nodes.. . . . 18

The Gaussian kernel used for converting distances to similarities. alive of the
hyperparametar controls the aperture of the similarity window. 26

Structure of a two-pass learning system. The first-pass classifigptaauriginal
featuresx; € X and outputs probability distribution estimatesover labels. The
graph-based learner uses these estimates as input features in conjwitii@
distance function that is suitable for probability distribution spaces. 29

Architecture of first-pass supervised classifier (MLP) for lexiaoyuésition. . . . 38

Two baseline translations of Arabic sentences containing the same negdgie
phrase “IA ymknk” (“you cannot”), where “|A” is the negation, is mistakeskg-
mented in the second example such that the negation is lost in the translatentsergé

A similarity graph containing a source vertex with label 1, a sink vertex._ with

label 0, and several intermediate vertices that may or may not be conmuliretettly

to a source. Edge weights are not shown. Label propagation assiglrgatued

labels at inner vertex that regress the harmonic function for the grapgiveh
vertex’s label depends on its connections with the source and sink,|smdfats
connections with other vertices. In order to be meaningfully assignedre, saxh

test vertex must have a path (direct or indirect) to at least one of the tdices

Ve ANAU_. L e e e 92

Three sentences organized in a trie. The shared prefixes aresedltagether. . . 150

Timing comparison of brute force kernel computation (hollow dots) vsbaied
dynamic programming computation (full dots). The graph displays the time to com-
pletion for comparing one hypothesis set consisting of 73 hypotheseseoside,
againstN hypothesis sets on the other side. The average number of hypotheses pe
SEtiS72.8. e 155

5.3 The variation of the improvement factor of the proposed algorithm dwerta force
implementation on the same experimentasinFig.5.2.

Vi

LIST OF TABLES

Table Number Page
2.1 Main notations used throughout this document. 7
3.1 Featuresused forlexiconlearning. 38
3.2 Accuracy results of neural classification (NN), LP with discrete feat(LP), and

3.3
3.4

3.5

3.6
3.7

4.1

4.2

4.3

4.4

4.5

combined (NN+LP), over 5 random samplings of 5000, 10000, andQ.E®&led
words in the WSJ lexicon acquisition tas&(G) is the smoothness of the graph

(smallerisbetter). e 44
Features used in the word sense disambiguationtask. 45
Accuracy results of other published systems on SENSEVAL-3. Systefand 3

use syntactic features; 5, 6, and 7 are directly comparably to our system.. .. . 48

Accuracy results of support vector machine (SVM), label projp@gaver discrete
features (LP), and label propagation over SVM outputs (SVM+LR)tHe word

sense disambiguation task. Each learner was trained with 25%, 50%, 7&#- (5

dom samplings each), and 100% of the training set. The improvements of ER'M+

are significant over LP in the 75% and 100% cas¥$7) is the graph smoothness. 49

Training, development, and testing data used in the Vocal Joystickiegoes. . . 55

Error rates (means and standard deviations over all speakeigpusaussian Mix-
ture Model (GMM), multi-layer perceptron (MLP), and MLP followed by i@gh-
based learner (GBL), with and without adaptation. The highlighted en&gssent

the best error rate by a significant margin< 0.001). 57
Data set sizes and reference translations count (IE = Italian-tisEn@\E =
Arabic-to-English). 99
GBL results (%BEU/PER) on the IE task for different weightings of labeled-
labeled vs. labeled-unlabeled graph edgass(Bbased similarity measure). 102
GBL results (%BEU/PER) on the Italian-to-English IWSLT 2007 task with simi-

larity measure based onastringkernel. 102
Effect (shown on the evaluation set) of GBL on the Italian-to-Engliststation

system trained with train+developmentdata. 03 1
GBL results (%BEU/PER) on the Arabic-to-English IWSLT 2007 task with simi-

larity measure baseditBuU, 0 =0.5. e 103

vii

5.1 Run time for brute force graph construction and original label prajayvs. kd-
trees and in-place label propagation. Graph construction is improveddgrtiers
of magnitude. Convergence speed is also largely improved, but hasizelglamall
contribution to the overallruntime. o Lo 163

5.2 Heap primitives used by Algorithm 9. General texts on algorithms and tata s
tures [123, 52] cover implementation of heap primitives indetail. 165

5.3 Loss in the inverted index depending on the cutoff for most similar sesgefidie
fractional number<.(n) (Eq. 5.54) and’s(n) (Eqg. 5.55) are multiplied by 100 to

obtain percentages. 6 16
5.4 Dependency of loss on over-allocation. Outgfsamples selected by using the
inverted index, the top = 10 have been retained using the string kernel. 166

5.5 System-level optimizations in implementing Algorithm 13 and their influence on the
timing results. The optimizations have been applied in the order shown, so optimiza
tions towards the bottom may experience a diminished effect. The percema sh
are absolute run time improvements compared to the unoptimized implementation
ofthe same algorithm. 171

viii

ACKNOWLEDGMENTS

| hope that the committee and the occasional reader will allow me to use a caidydiess
formal tone in here than through the rest of my dissertation. If you pfeferal language, math,
and the passive voice, there’s a good amount of those to come after geigthaugh | did try to
not overuse the latter). This is the one place where | can be “I” andenteam extend my personal
thanks to the people who helped me the most with my work.

Doctoral work is much more of a team effort than most of those involveddvaalize. In spite
of the many long solitary hours | have spent on my research, | havetbeducky beneficiary of a
vast support network.

In mentioning those I'd like to extend my gratitude to, finding the appropriaterasd even
a starting point is difficult. We carry the integral over time of our influencirgegiences and
interactions on our back, and it’s difficult to assess and compare anlrarfiecisive interaction
against a relatively late but intense collaboration. | can only proceed worder that | myself
consider arbitrary.

I'd like to thank my advisor, Katrin Kirchhoff, for taking, starting back in() an insecure
grad student with a huge impostor syndrome from the “NLP seems to be cwel’dikthe way to
doctoral level. Looking back, | see many ways in which | could have dmiter, and I'd almost
wish her that | was one of her worst students if my sense of honor wogigimr me into wishing |
was one of her best. | also thank my other committee members, Jeff Bilmes amdEQieni. We
didn’t get to interact as much, but I've received very helpful andignitial insights and feedback
from both after my general exam. Thanks to Jim Augerot for graciousigating the role of GSR.

| owe a great debt to Scott Meyers, who has been my friend and memtelefen years now.
He has gently but unabatedly encouraged me to pursue a doctorate bysosie odd inverse
psychology, as withessed by this quote from an old email of his: “Asksaifirdo | really enjoy

doing research, which means putting in very long hours for next to no ynoneopics that are

iX

unlikely to be terribly practical? If not, stay away from a Ph.D.” Our frigmgsvon’t go down in
history like that of Hardy and Ramanujan, but that’s just because I'mhaeosvnear the latter; | can

only say Scott’s done best he could with whatever material he got.

My wife Sanda has been incredibly loving, supportive, and motivating wididnave navigated
this time of our life together, which has also included her own career gromdhoar son’s birth.
It's been almost four years now since we first met, and they've beendsieyiears of my life.
Considering these were grad student years we're talking about, thgirgysa world of good about
her. I'm also grateful to our six-months-old Andrew. My dissertationfaded to smile back at me,
but he did a great job at supplementing it in that regard. | wish that some time ithe road he’ll
have no difficulty in understanding this dissertation, and also that he’llfipdesearch quaint and

obsolete in ways | can’t even imagine.

| thank Andrei lonescu-Zanetti, my high school physics teacher andarg-time friend, for his
extraordinary positive influence during my formative years as a woeldekentist and as a person.
My friends Petru Marginean, Mihail Antonescu, lonut Burete, Walter Bright, and Bartodewski
also deserve much credit, among others too numerous to mention. Whenewawn, | like to
take solace in thinking that | must be doing something right if | got to meet ainietbe people who

are so much better than myself.

The Signal, Speech and Language Interpretation (a.k.a. SSLI “slyf)hlas been a generous
and friendly oasis for research and beyond. | know the atmosphereiénaachical environment is
mostly determined by its leaders, so there is no doubt in my mind that the facdlBildeés, Mari
Ostendorf, and of course Katrin are to be credited for that. I'm grhatefaverybody in the lab,
and in particular I've enjoyed many fruitful conversations related toaneseand much more with
Amittai Axelrod, Chris Bartels, Kevin Duh, Karim Filali, Sangyun Hahn, Dusifiard, Xiao Li,
Jeremy Kahn, Jon Malkin, Arindam Mandal, Marius Alex Marin, Scott OtteysSarah Petersen,
Sheila Reynolds, Karen Studarus, Amar Subramanya, and Mei Yapeciébcredit goes to Karim,
with whom I've enjoyed many great conversations over about as mdfeeso What didn’t kill us

certainly made us sleep less.)

My parents have inoculated me from an early age with a desire to learn eadlazys encour-

aged my creativity, which was not always easy given the rate with whidsllweaking electronic
appliances around the house. My sister and parents have been ihcstaliimch supporters of mine,
always believing I'll do something great. .. yet always happy with wretéended up doing.

I'd like to extend my gratitude to the faculty and students in the CSE departmemiarsity
of Washington. This is a great place to pursue research and | fourdyithurturing and collabo-
rative. I've received good insights and advice (particularly while | Veaing for a thesis topic)
from graduate advisor Lindsay Michimoto and professors Richard &sode Brian Bershad, Gae-
tano Boriello, Luis Ceze, Craig Chambers (special thanks for guiding maghrmy anticlimactic
quals), Carl Ebeling, Steve Gribble, Dan Grossman, Richard LadridNotkin, Mark Oskin,
Larry Snyder, Steve Tanimoto, Dan Weld, David Wetherall, and Johnrgzaho

Last but not least, many thanks for all interaction to fellow grad studenitsE3&iges, Alex Col-
burn, Lubomira Dontcheva, Jon Froelich, Jeremy Holleman, JonathaKe{mwoo Lee, Wilmot
Li, Todd Millstein, Andrew Petersen, Matthai Philipose, Maya Rodrig, BepdShenoy, Aaron
Shon, Adrien Treuille, Deepak Verma, Steve Wolfman, Tao Xie, and Adsayates.

I’'m sure I've forgotten more than a few. My hope is that if you believerymame belongs here,

you have also developed an understanding of and a tolerance to mylpab¥ergetfulness.

Xi

Chapter 1
INTRODUCTION

Machine Learning methods based on global similarity graphs can be useekstully against
realistically-sized Human Language Technology tasks addressing preliteNatural Language
Processing, Automatic Speech Recognition, and Machine Translation.

There are good reasons for pursuing such an endeavor. We plgingpGraph-Based
Learning—a novel machine learning method sporting many desirable iexgpeto concrete prob-
lems in the vast, dynamic, and largely unsolved fields of Natural Language$sing, Automatic
Speech Recognition, and Machine Translation. We will refer to these fieltksctively as Hu-
man Language Technology, in short HLT. Although various algorithmgefnmning with similarity
graphs have been proposed, they have been largely confined to pighlgm-specific formulations
and small data sets. This dissertation proposes generalized, systenthticakable applications of

graph-based learning to a large variety of HLT tasks—and possiblynigeyo
1.1 Whatis Human Language Technology?

Our daily lives are more structured, sophisticated, and informationallyrribla@ probably at any
time in history. We have become so used to the notions of rapid change ayrégspoit is hard to
imagine that most previous generations of people lived through long gerfaglative stagnation.
Discussing whether that all is for our own good is beyond the scope dfiigertation, but one thing
is clear—one fundamental cause of today’s rate of progress is thatamhautomated computing.
Computing has pervaded our daily lives in many ways, starting from the odwoch as per-

sonal computers and the Internet, and ending with the many small embeddenhsyesiding in

today’s music players, telephones, and kitchen appliances. Clearly tersmipave matched and ex
ceeded human capabilities at sheer numeric computation and informatioresemeglso at certain

specialized tasks that were once considered the monopoly of human intedligsnch as planning,

proving theorems, or playing chess. Many interesting and succepglidations of automated com-
puting, however, include the human as the essential participant in an asyoewetrange: content
on the hugely informative Internet is mostly generated by humans; poysgkanss such as the Web,
email, instant messaging, social websites, or smart telephony, do little moreatiagly brokering
interaction between human beings, who do the “interesting” part. One keg pieexpanding the
capabilities of computers in such directions is having them understand ehdrege information in
natural language. This is the object of the vast field of Human Languagfandlogy (HLT).

Improving on automated processing of human language is not only helpimgriitmachine
interfacing, but more importantly makes a wealth of human-produced informayailable for au-
tomated processing. Such processing would reinforce a learning catleitther equips machines
with the capability to acquire ever more detailed and subtler aspects of hurtiare ciHowever,
priming this cycle poses a chicken-and-egg problem. Human languagedsasex as the human
psyche itself. Language is the main vehicle we use to understand the wottthdeptualize new
ideas, and most often to convey them. Since to this day we have not sedd@ibAlntelligence,
and since true human language understanding likely requires full-fldugedn-like intelligence,
Human Language Technology is one of the most formidable challengethauting is facing to-
day. HLT is colloquially called “Al-complete,” hinting to the fact that achievimgman-grade HLT
is tantamount to achieving human-grade Al.

Due to its size and complexity, the field of HLT is divided in many highly special&zéifields.
Within the main fields of Automatic Speech Recognition, Machine TranslationNamaral Lan-
guage Processing, HLT subareas under active research todaglenmusing, speaker detection,
document and speech summarization, speaker detection, word semsbigdistion, named entity
detection, question answering, coreference resolution, part-e:sgagging, information extrac-
tion, and more.

The initial research enthusiasm underestimated the size of the problerfiebattzoom and bust
cycle, the field of HLT is undergoing an accelerated evolution. Even the skegtical observer
would have to admit—sometimes with annoyance—that automated HLT systemsreotaiieg
through the fabric of our society. Speech interfaces for automatedeptiaiog systems not only
make it more difficult to reach an actual human customer service reprégenbat act increasingly

less distinguishable from one; combining speech recognition and autorreatsthtron has also led

to early automated two-way telephone translation systems; myriads of autoystetds connected
to the Internet parse and process text pages, answer questions innitéearal language, or produce
intelligible translations of web pages and other texts (albeit sometimes with husn@sults); and
the list could continue. While we are far from anything like a true solution etls¢ésps show that
we do have an attack on the problem.

Several factors are conditioning this recent accelerated progréssindreased availability of
computing power, the advent of the Internet, the ubiquity of broadbantmication, and the
exponential improvement of storage in both density and affordability [B@d§ enabled produc-
tion of text data in enormous quantities [35], with speech data closely follosuitg154]. In a
concurrently-evolving trend in HLT, statistical methods outpaced symbdkelrased methods in
applicability and performance [105, Ch. 1]. (Rules are, however, ngakioomeback, just not as
whole systems, but as aides and complements to statistical systems [196]225, 9

Such data abundance would bode well for the data-hungry statisticakbigpioaches, except
that many statistical HLT applications require model training Wébeled (annotated) data. In
contrast with the readily-available raw data, labeled data is labor-intersoxe to produce, and

expensive to obtain. Scarcity of labeled data is most acutely felt for lesgrklanguages, such as:

« languages without writing systems (purely spoken). Of the world’s estth7@t@0 languages,

only one third have writing systems [74];

* languages without standardized writing systems. Scripts of such laegueye a lot of
variation, which requires extensive text normalization and therefoteduslows down data

acquisition;

« dialects and vernacular languages;

* non-mainstream languages (languages offering little economic or politicahiive to HLT

system builders).

Today’s strong informational globalization trends warrant developing@ Kystems that can

work with languages and domains offering little annotated data relatively touhstity of un-

annotated data. This setup is directly addressed by semi-superviseiddeaethods, which we
briefly describe below.

Traditional statistical learning methods ussupervisedapproach, meaning that a model’s pa-
rameters are adjusted (trained) by using labeled data, i.e., data for whitinpats (also known
asfeature$ and correct outputs (often referred tolabelg are known. After the model has been
trained, it is able to predict correct labels when presented with formedgen features, as long as
there exists correlation between features and labels and the correlatiersentie for both training
and test data. Another statistical learning method, in a way converse twisggdearning, isinsu-
pervisedliearning. In an unsupervised setup, labels are not known for neitipiniy nor test data.
The system, however, infers labels by discovering patterns and clisteature space. There is
no formal distinction between training and test data. Finally, a third method caledsupervised
learning borrows traits from both supervised and unsupervised lgadika in supervised learning,
labeled samples are present; and like in unsupervised learning, unléiesi®dlata is used during
the learning process. Unlabeled data hints the learning system with infornadiiart density of
data in feature space. If density of data is high around specific labeletigely low around deci-
sion boundaries (assumption that is sometimes, but not always, applj¢ablelnlabeled samples
may help the labeling process. Section § 2.2 includes a formal definition danetlapth discussion
of semi-supervised learning, including its enabling assumptions.

Semi-supervised learning methods include self-training [229], co-traif2@} transduc-
tive Support Vector Machines [110], and graph-based methods R®). Our work builds on
the latter. Some properties of interest in Graph-Based Learning (GBlud@dew parameters to
tune, global consistency over train and test data, tractable global optimueneirily adaptive mod-
eling, solid intuition behind the learning process, and most importantly, extedsults with the
setup of little train data and abundant test data (a situation common to many Hlida#ipps, as
discussed above). These advantages would make GBL an excellentfarate@ny of today’s chal-
lenging machine learning tasks in Human Language Technology, werefiimitd disadvantages:
the burden of choosing an appropriate similarity measure in complicateddepaces, exacerbated
scalability issues (quadratic time complexity in the total data size in a straightibivagtemen-
tation), problems in addressing disparity of train and test data, the needitthiv&ntire data set

in-core prior to computation, and the difficulty to parallelize (an increasingbynment require-

ment from basic algorithms in wake of today’s serial computing crisis). Tloikwirst provides
the appropriate background information and then addresses theseltiifiérom both theoretical
and practical perspectives, with a focus on getting principled, thedigtstaind solutions to work
on realistic tasks in HLT—a heavily experimental field. Experiments condwstted how the pro-
posed solutions properly tackle the respective challenges, and theembtasults illustrate how the
improved graph-based algorithms perform significantly better than statee@irt machine learning

systems for HLT.

Organization The rest of this dissertation is structured as follows. Chapter 2 introdiezas
supervised learning as a general approach to learning and provaesdhssary background for
Graph-Based Learning, with an emphasis on the label propagation alganiti its characteristics
concerning HLT applicability. Chapter 3 discusses in detail the problenraghgconstruction.
Chapter 4 discusses applications of graph-based learning to strulgtamneithg. Chapter 5 discusses
scalability issues in graph-based learning, and Chapter 6 concludssdssing the intended impact

of the proposed research.

Summary of Contributions We provide in Chapter 2 an alternative proof of convergence for iter-
ative label propagation. Compared to the original proof by Zhu [238]peooof rigorously uses only
the minimal requirements for convergence, while remaining simple and terapteZl3 proposes a
data-driven approach to graph construction. That approach ssgeeavised classifier that provides
features for the graph-based learner. We illustrate data-driveh gaystruction with experiments
on lexicon learning and word sense disambiguation. On the latter task we sigtaificantly better
results than the comparable state of the art (the former experiment haselmép In Chapter 4
we propose a framework for applying graph-based learning to stactinputs and outputs, in a
formalization that is applicable to a large variety of tasks. We then instantiatéainagwork for
machine translation and apply it to a real-world translation task, improving date-af-the art

baseline. Finally, we introduce several contributions in Chapter 5 deditatealability:

* an in-place label propagation algorithm that is always faster than thimalriterative algo-

rithm (experimentally converges in roughly one third of the number of steps)

» a multicore label propagation algorithm that uses parallel processinigeamgin data races to

distribute work on label propagation;

» agraph reduction algorithm that reduces the size of the graph bysatleragnitude without
affecting the result of label propagation (we use label propagationop®ged by Zhu [238]

throughout this dissertation);

» experiments with a real-world speech corpus that yield accuracy simifjdetter than state-
of-the art results on the Vocal Joystick speech corpus, while also Iseelgble by using

kd-trees for fast nearest neighbors computation; and

+ an algorithm called BN TRIE that optimizes string kernel computations over a set of strings,

which experimentally is three times faster than existing approaches.

Two appendices mention theoretical results that we believe are interestipgtmtially useful,
but that we have not used in our experiments. One appendix introduoagper bounds for the
number of steps to convergence of the label propagation algorithm, aotheéredefines an alternate
algorithm that converges in fewer steps than the version we use, ats$hefaequiring a more

expensive matrix squaring operation.

Chapter 2
BACKGROUND

This chapter introduces the reader to the fundamentals of semi-supeeasethg, in partic-
ular graph-based learning and label propagation, with a focus on Hiluaraguage Technology

applicability.
2.1 Notational Aid

For convenience in understanding the equations presented in this vednlle, 2.1 defines the most
important notations used throughout. By necessity some of the terms habveerotlefined at this
point yet, so the reader may want to skip this section for the moment and tetitnvhenever the

definition of a symbol is unclear from context.

Table 2.1: Main notations used throughout this document.

Notation Description

a, b, c Real numbers or sequences

a,b,c Row vectors (e.g., feature vectors)

A, B Matrices or sets

[a,b) etc. Classic interval notation(“and “)” for open, “* and “]” for closed

Ry The intervall0, co)

R* R\ {0} (alsoR’ is (0,00) andN* isN \ {0})

{e1,...,en} Finite set

(e1,...,en) Finite ordered set a.k.a. row vector (unlike in a set, the order does matter

and equal elements may occur multiple times)
ap) Thei" component of vectaa (notation chosen to avoid confusion wih
thei™ vector in an ordered séfai, ..., a,)))

(continued)

Table 2.1(continued)

Notation Description

BA For sets4 and B, B* is the set of functions defined ohwith values inB:
BY&({f|f:A— B}
A" The set of row vectors of length € N* with elements inA (A stands in

for any set, e.gj0, 1]" is the set of row vectors of length with elements

in [0, 1])

A The set ofm x n matrices with elements iA

" The identity matrix of sizen x n (n may be missing if clear from the
context)

cmrn A matrix of sizem x n with all elements equal to

dn(b) The Kronecker vector of length € N* with 1 in positionb € {1,...,n}

b—1 n—>b
and 0 everywhere els€(0,0,...,0,1,0,0,...,0))

log x Logarithm in base 2

Inx Natural-base logarithm

(e N* Label count (number of distinct labels in an unstructured classification
problem)

teN Number of labeled (training) data samples

ueN Number of unlabeled data samples

X= ((x1,...,%p) Train and test features

X The (possibly infinite) set to which train and test features belong in a learn-
ing problem

Y= (y1,.--,¥¢) The training labels

y The set that labels belong to (for unstructured laBels- {1,...,¢}, for
structured labeld’ is an elaborate, potentially infinite set that depends on
the problem)

card(X) The number of elements in discrete 3e{for infinite setscard(X) = o0)

(continued)

Table 2.1(continued)

Notation

Description

We R(:—i—u)x(t—&-u)

P c [O, 1](t+u)><(t+u)

Py € [0, 1]%*
Py € [0, 1]%*
£ e Rt+wxs
£, € R¥¥¢

£y € RO
veRL

T € RY

«—

lI>

[a]
7

Symmetric matrix holding pairwise similarities between samples, with la-
beled samples coming in the top-left corner

Matrix holding row-normalizedpairwise similarities between samples, in
the same order as

Bottom-left sub-matrix oP holding unlabeled-labeled similarities
Bottom-right sub-matrix oP holding unlabeled-unlabeled similarities
Matrix holding the (temporary) solution in a label propagation iteration
The topt lines of £

The bottormu lines of £

Lower bound for convergence speed in iterative label propagation
Tolerance for fixed point convergence

Mutation, e.gf <« Pf replacest with Pf (only valid in algorithms)
Introduction of notation, e.dlal| £ v/d(a, 0)

The indicator function: 1 if Boolean predicatds true, 0 otherwise
GivenA € K andf : K — K/, f (A) creates a vectad’ € K'® contain-

ing the element-wise application ¢fto A

The expressiop log p occurs frequently in this text with > 0 (usuallyp is a probability). Although

the functionp log p is undefined fop = 0, we define by conventiohlog 0 = 0. This is a continuous

extension justified by the fact thﬁ{%plogp =0.
p

2.2 Semi-Supervised Learning

Machine learning techniques for supervised classification use labaketbdaain models that learn

an input-output mapping function. A supervised model takes as its trainingargample collection

represented by feature vectdts= ((xi,...

,Xt)), Wherex; are vectors belonging to a feature

10

spaceX. Also, in a typical unstructured classification task, discrete labels artalaleafor these
samplesyY = ((y1,...,ys) Withy; € {1,...,¢} Vi € {1,...,t}. The goal of the training stage
is to obtain a system that provides a good approximation of the probalijity). When presented
with previously-unseen (test) samplesii the system is able to attribute estimated labels to them.
The commonly-made enabling assumption is that both train and test samples toetbergsame
distribution—i.e., they are assumed to be independently and identically distributed

One problem is that sometimes—and frequently in Human Language Techn(Hid)
applications—obtaining labeled data is a slow, expensive, and erroe-process that requires ex-
pert human annotators to tag data manually. In contrast, unlabeled ddtaéstsv text, speech, or
images) is often abundant and easily obtainable. The need is therefgertxianatep(y|x) from
only few labeled samples and many unlabeled samples. Semi-supervis@uj¢8L) is designed
to exploit such situations by systematically using a small amount of labeled datajiunction with
a relatively large amount of unlabeled data in the learning process.

The typical SSL model takes as input a sample set represented by $eaturéx, ..., x¢y) ,
where x; are again vectors i'. Discrete labels are available for the finstsamples:Y =
{y1y.-.,ye) Withy; € {1,..., ¢} Vi € {1,...,t}. The goalis to obtain a classifier that minimizes

classification errors on the test set. Depending on subsequent uddéntdsmf SSL classifiers can

be distinguished:
* transductive:ithe test data i§(x¢41, ..., Xetu) ;
« inductive: the test data consists of samplé€s; yi1, ..., Xt1urm) € X, unseen during
training, to which the original unlabeled sék. 1, ..., x¢ty) May or may not be added.

Distinguishing between SSL and transduction can be subtle, partly betteuerature tends
to use slightly different definitions for each. A simple definition proposedimy [239] is: SSL is
transductive if the resulting model is defined only Xynin contrast, if the model is defined oti
(i.e., it can predict a label for any point in the feature space), then Stganisductive. For example,
although transductive support vector machines (TSVMs) [111] assutransductive setup, they
define a model that, in spite of its name, supports inductive inputs naturallythéother hand,

traditional graph-based approaches [27, 234] are unable to hamsikemn inputs, although recent

11

work has extended graph-based frameworks to handle unseen inthastwnodifying the model
and in a computationally-efficient manner [64]. In short, in transductigeniag all test data is
available at the beginning of the training process, whereas in inductiverigahe training proceeds
without some of the test data (or even without any test data at all, in whieltltasemi-supervised
effect is forgone and the process degenerates to simple superviggddga

Like any machine learning technique, SSL builds on certain assumptionsthbaature of the
function to learn. All machine learning methods rely on some notion of continuigyrmothness
of the function mapping inputs (features) to outputs (labelsk d@ihdx’ are similar, then the la-
belsy andy’ are likely to be similar (equal in the case of discrete labels). Semi-supetemeting
methods actively exploit unlabeled data in enforcing that assumption. Wsgatfeled samples can
only help ifp(x) can be related tp(y|x), and to do that additional density assumptions are needed.

Commonly-used assumptions used by SSL algorithms are [42, Ch. 1]:

» The cluster assumptionData points in the same cluster have the same label. A converse
formulation is that the decision boundary should span low-density spackaw@id high-
density spaces. Adding more unlabeled data helps defining clusters anidyidg high-

density and low-density regions.

» The manifold assumptio:he high-dimensional samples lie on a low-dimensional manifold.
This can be seen as a particular case of the cluster assumption. Addibgladlaamples

helps approximating the structure of the manifold and computing accurategjeadstances.

If semi-supervised assumptions are not met, it is possible that unlabeleactizatly harms the
learning process [58, 56, 57]. As a simple example of unmet assumptimmsider two clusters
in X belonging to distinct classes (i.e., bearing distinct labels). Some sampleshitlaater are
labeled, and many are not. If the clusters do not overlap significantly,gtisidn boundary goes
through a low-density region. But as the clusters get closer to each titkealata density in the
overlapping region grows and at a point will even surpass the maximusitder either or both
clusters. In that case, a density-informed semi-supervised learneranajude that the clusters

belong to the same class. In such cases the class with a higher densityiofjteamples “wins”

12

and in fact the use of unlabeled data only hurts because it propagatetigedecision deeper into

the other cluster’s region.
2.3 Graph-Based SSL

Graph-based SSL algorithms have received increasing attention in v gexars [27, 214, 235,
236, 237, 232, 29, 239]. In graph-based SSL, data points aregaian a weighted undirected
graph that reflects similarity among samples; the weight of an edge encedsssigth of the sim-
ilarity between that edge’s endpoints. Unweighted similarity graphs canrsédewed to have unit
weights for all edges. The graph is characterized by its symmetric weighkma&rR$+“)X(t+“),
whose elements;; = wj;; are similarity measures between vertiégesnd j, and by the ordered
set ((y1,...,ys)) that defines labels for the firstvertices. If no edge is linking nodesand j,
thenw;; = 0. Other than that, applications have considerable freedom in choosindgbkeset and
thew;; weights. For example, a simple approach to building a graph is to defire 1 if x; andx;
fall within each other'st nearest-neighbors, and zero otherwise. Another commonly-usedtweigh
matrix is defined by a Gaussian kernel of parameterized width:

. (2.1)

Wij; = €Xp |:—

whered(x;, x;) is the (estimated) distance between feature vectpedx;, anda is a hyperpa-
rameter to be chosen on a theoretical basis or optimized experimentally. Noticsithilarity is
quickly decaying with distance, reflecting a dependence of graphdt&SEk on accurate estimates
of high similarity, but not necessarily of low similarity. In practice, a host istahce measures
have been used, based e.g. on cosine similarity, Euclidean distanciesJdefhtusita distance, or
Jensen-Shannon divergence. Often, applications use a blend ofdwathaefiningw, for example
by layering ak nearest-neighbors or fixed-radius neighborhood on top of weightslated by us-
ing Eqg. 2.1. Choosing the appropriate similarity measure practically decidgsaple construction
and is the most important factor in successfully applying graph-based SSL

Intuitively, in graph-based SSL, outputs can be computed by means bt§lagdn neighborhood
membership, even though the similarity of many unlabeled samples with actuatiabeiples can
be weak or even not defined. This is why graph-based semi-sumieisming often performs

better than nearest-neighbor approaches, although both make similapéissis.

13

2.3.1 Graph-Based Learning Algorithms

Blum and Chawla [27] formulated binary classification on a similarity graphragaut problem,
i.e. finding the smallest total weight of edges that, when removed, cut thd@tween the binary-
labeled samples, modeled as sources and sinks. The nodes then #ieddesending on whether
they are on the source or sink side of the partitioned graph. The main pratitl this approach
is that it gives discrete results (does not provide a confidence of tiedingp which makes the
method unsuitable for function regression. In follow-up work, Blum ef28] obtain confidence
information in a manner reminiscent of the Monte Carlo method by performing muitipieut
calculations, each preceded by adding random noise to edge weigbtaghg over many mincuts
lends confidence information to the classification.

Szummer and Jaakkola [214] proposed a random walk on a similarity gréipéir random
walk has a maximum length that ensures termination, albeit not necessaritylaia optimum.
Zhou et al. [232] described the label spreading algorithm, which is similabtl fgopagation but
includes a regularization term in the cost function, thus yielding a smoottgutoBelkin et al. fo-
cused on the regularization aspect and derived bounds on the jgatera error [12], and also
developed theoretical underpinnings for handling out-of-sample lab&]s Agarwal [3] proposed
an algorithmic framework for hierarchical ranking on graph data by mefregularization using a
modified cost function. Zhu et al. defined SSL using Gaussian fieldsamaomic functions [237]
and defined the label propagation algorithm [234], proving that it adveayverges to a global op-

timum. Our research builds on the label propagation algorithm, which weibeserdetail below.

2.3.2 Label Propagation

Once theW matrix is constructed, the basic label propagation algorithm [234] alsdroeots the

matrix Yy, of sizet x ¢, encoding the known labels as Kronecker vectors:

YL (rows) = Oe(¥i) (2.2)

whered,(yi) is a Kronecker row vector of lengthcontaining 1 in positioryy:

k—1 l—k
—_— ——
(0,0,...,0,1,0,0,...,0) (2.3)

[

6e(yk)

14

Algorithm 1 defines iterative label propagation. The definition usuallyddoniterature [238] does

not include the toleranceand only focuses on iteration to convergence without regard for sgfeed
convergence. We introduced> 0 to ensure provable convergence in a finite number of steps, for
which we will compute a bound in Chapter 5. Also, our definition provides metaildor practical

implementations.

Algorithm 1: Iterative Label Propagation

Input : Labelsy; similarity matrixw € Rgf“)x(”“) with w;; = w;; > 0

Vi,j € {1,...,t +u}; tolerancer > 0.
Output: Matrix £y € [0, 1]%** containing unnormalized probability distributions over labels.
1w — 0 Vie{l,...,t +u};
p¢j<—t+‘?j Vi, je{l,...,t+u};
Y
k=1
(Yo)rowi < Oe(yi) Vie{l,....t};

4 ff — vt

w

5 repeat

6 fr «— Yy,

7 fU — f{J,
8 £ — Pf;
t+u /¢
H ! .
until Z Z £ — £ <7
9 i=—t+1 j=1

Step 1 eliminates self-similarities;, which are usually large relative to other similarities. This
eliminates self-edges in the corresponding graph. The step is not mduirteself-edges only delay
convergence and may reduce numeric precision by forcing all other dtieiao be small numbers

after normalization.

After the algorithm terminates, thematrix contains the solution in rowts+ 1 to t + u in the

form of unnormalized label probability distributions; most applications nesd habels, obtain-

15

able by:
§; = argmaxf;; Vi€ {t+1,...,t +u} (2.4)
el

Zhu has shown [238] that the iteration converges. We provide the pedoiv for reference. Let us

first splitP into four sub-matrices:

Pir Py

P= (2.5)
Py Pyu

With these notations, the following theorem applies.

Theorem 2.3.1(Zhu 2003 [237]) If > (Pw),;

Sy <1Vie {1,...,u}, then Algorithm 1

j=1
terminates regardless of the initial value if chosen in step 4.

Proof. The algorithm’s core iteration becomes:

fy « fy (2.6)

f{J — PUUfU -+ PULYL (27)

which is repeated untity is equal element for element witt};, within accumulated tolerance

Unrolling the iteration yields

t
£S1ePt _ pt gSteR0 (Z P{I;l) PurYL (2.8)

=1

We multiply both sides of the equation liy— Py to the left, obtaining:

t
(1 — Pyy)£5°P" = (1 — Pyy)Plyfa®™ + (1 — Pyy) (Z P%m) PurYL (2.9)
=1
= (1 — Pyy)Pu s + (1 — PPy YL (2.10)

We need to show that, converges when — oo. In fact it does converge to the null matrix. We

will show by induction thaf} " (Ply);; < +' Vt € N*. The base step far= 1 is directly provided
j=1

16

by the hypothesis. For the inductive step, we write an elemepit,odis follows:

u

D)i =Y (Pl (Pov)y (2.11)

j=1 j=1k=1
= (Pis"). > (o), (2.12)
k=1 j=1
<7D (Pw')y (2.13)
k=1
<A (2.14)

The row-wise sums of elementskgy converge to zero, and since all elements are positive, they all

converge to zero. This nullifies the term involviad*™ and makes. — P4;! converge tal. O
Solving Eq. 2.10 forfy yields:
fy = (1 — Pyy) 'PurYr (2.15)

which has a unique solutionif — Pyy is invertible, i.e., if all of graph’s connected components have
at least one labeled point in them. Notice that Theorem 2.3.1 imposes a siresigietion, namely
thateveryunlabeled node in the graph is connected to at least one labeled nodbe®hem below
lifts that restriction and clarifies that the non-singularity requirement aloaeagtees convergence

of the iterative solution.

Theorem 2.3.2.1f 1 — Pyy is non-singular, then Algorithm 1 terminates regardless of the initial

value off;; chosen in step 4.

Proof. We first prove that each elementrf, decreases monotonically:

u

PHD G = (Puu)is (Pl (2.16)
k=1

<> (Pow)iy (Pl s (2.17)
k=1

= (Ply)ij (2.18)

For the inequality we usePyy),; < 1 and the fact that the exponential function is decreasing

for bases smaller than or equal to 1. Since they are all positive, theyraiige by the monotone

17

convergence theorem [11], so there exists a maffjx= Jim Ply. Then
—00

Py = PwPgy (2.19)
Pyy — PuuPgy =0 (2.20)
(I — Pyy)Pgy =0 (2.21)

By the hypothesid — Pyy is invertible, so we can multiply Eq. 2.21 to the left by — PUU)’1

obtainingPgy = 0. O

This theorem is related to perennial work on irreducible diagonal domimatrices [208, 90,
216], and can in fact be interpreted as a converse of thg/{Desplanques theorem [90]. That
theorem states that an irreducibly diagonally dominant matrix is nonsingiiaar&ém 2.3.2 proves
that a weakly diagonally dominant matrix (in this case Pyy) with rows normalized to sum to 1,
which is also invertible, is irreducibly diagonally dominant.

The hypothesis of Theorem 2.3.2 relaxes the restrictions imposed by to¢éhkgs of Theo-
rem 2.3.1. Connectivity to at least one labeled node is not needed anythereequirement is
that1 — Pyy is invertible, which translates to a graph in which each connected compbasiait
least one labeled node in it. This result is intuitively justified and also knoam fthe methods
of relaxations [68]. The class of partially-labeled graphs for w@@o Py, = 0 is larger than the
class of graphs with non-singuldar— Pyy, but only the latter is of interest to us. Graphs including
disconnected unlabeled components are not “grounded” and mayeegsi constant label across

each such component because absence of labeled nodes bringsmatidn to those components.

2.3.3 lllustration

Figure 2.1 shows a graph before and after the label propagationsgrosiedges have unit weight.
Initially, there are two “+” labeled nodes and two “-” labeled nodes. Toaslmformation on con-
fidence, we use nuance-coding as well. The label propagation alggritehes the labels into the
test nodes, the result being a blend of “+” and “-” for each node.

Note that the graph as drawn is planar but actually could reside (as a skghtiyd or “crum-
pled” manifold) in a high-dimensional space. Graph-based algorithms et@atdand exploit the

lower-dimensional mesh defined by the graph. That is why defining a dstdnce measure

18

is important—good edges reveal that data lies on a low-dimensional manifotbigicase two-
dimensional) that in turn is situated in a high-dimensional feature space.

The shades of grey filling the nodes in the bottom graph in Fig. 2.1 areaequroportional
mixes of black and white computed from a real label propagation on thé geaen after account-
ing for possible aberrations in the rendering process, it can be easiiyhsesv test nodes closer to

the white train nodes receive lighter shades than those closer to the biackades.

Figure 2.1: A graph for a binary classification problem before and ke propagation. The labels
are encoded as white-§ and black ¢), and all edges have unit weight. The process assigns labels to
unlabeled nodes depending on their connections with neighboring nathesles of grey represent
different probabilities for the label assignment. By virtue of the globalneativity properties,
unlabeled nodes receive labels even when they are not directly dedrie@ny labeled nodes.

Applications on real data lead of course to much larger graphs lying in hdjhmensional
spaces. Fundamentally the desired effect in applying graph-baseihtpés the same: starting
from points in a high-dimensional space, create a mesh defining a lowenslonal manifold and

operate on it instead of the original space.

19

2.3.4 Cost Function for Label Propagation

Convergence is interesting only if the convergence point has desinalglerties, such as optimizing
a goal useful in a learning process. The fixed point of the label giatjn satisfies = P£, with
values off restricted to existing labels for all labeled data. For a given unlabeled pamthe

graph and a label, we have

t+u
i z; wijEje
‘]:
fic = Zpijfjc = (2.22)

=1 3
j=1

So along each column the value off at each point is the weighted average of its values at neigh-
boring nodes, with the restriction that valuestgf at all labeled points is 1 if pointbears labet,
and 0 if pointi bears a different label. Functions satisfying Eq. 2.22 are cél@donic func-
tions and label propagation is in fact an application of the method of relaxat®et to compute
harmonic functions [68], with two notable differences: (a) label pragiag uses matrix algebra
to update function values at all points in the graph in one macro step; atab@)propagation
updates simultaneously function values fordibels, whereas traditionally the relaxation method
computes a uni-dimensional function (akin/te= 1). Harmonic functions occur naturally in many
physical and statistical phenomena (such as electric networks, theadamgs, rigid solid physics,
and random walks) [68] and enjoy a number of interesting properties.oDparticular interest is
smoothness By Thomson’s principle [1, Ch. 10], the harmonic function obtained thholabel

propagation minimizes the following cost function:

S= > wy(fa—1)’ (2.23)
i,5€{1,....t+u}
>t V>t
ke{l,....0}

The conditiory > tV j > t is present to clarify that values 3, are fixed and only values df; are
learned to minimize the cost functibs. The cost measures the extent to which nearby nodes (as

defined byW) sport different values of ; minimizing S favors globally-consistent values ofsuch

!In fact “cost functional” would be a more precise term because in thsis tiee cost is parameterized by a function,
i.e.S(f). We use, however, an implicitly parameterized notation and the betterrkpbrase “cost function.”

20

that highly similar nodes are assigned highly similar values. & is called smoothness (which is

a mild misnomer, sincé& increases with “jerkiness,” the opposite of smoothness).

If hard labels are needed, we must associate a fgbel{1, ..., ¢} with each unlabeled node
The choice
yi = argmax £;; (2.24)
Je{1,....0}

minimizes the discretized version of the smoothness function:

S'= > wl§e # gal (2.25)
ije{l,....t4u}
i>tVj >t
ke{l,....0}
where[a # b] (defined in Table 2.1) is 1 i # b and O otherwise. Given, the labeling choice in

Eq. 2.24 minimizesS’ because it zeroes the largest term in the partial sum (for fjode
¢
S; = Zwij (fik — fjk)z (226)

So a hard labeling obtained through label propagation finds a labeling thhg txtent possible
and within the constraints established by the already-labeled nodes sasgisigtical labels to nodes
linked by high weights. This goal is consistent with the notion of similarity embollysd

The fixed point of the label propagation algorithm has a number of elgaivanterpretations
leading to various methods of computing the harmonic function. An intuitive irg&ation is that
of a random walk. The random walk on the graph characterizaeddoydY; is defined as starting
with an unlabeled vertex, stopping as soon as a labeled vertex is reactiechaking a step from

vertexi to vertex; with probability:
pij = Wij
Y >k Wik
It has been shown [238] that upon convergence of the label patipagalgorithm, the celf;;

(2.27)

contains (after normalization) the probability that a random walk starting irbetdd node will
terminate in a node carrying labgl
2.3.5 Previous HLT Applications

In HLT, Zhu applied label propagation successfully to a document cleatiifn task concerning

learning the Usenet newsgroup to which a specific document belon8k [Rang and Lee [179]

21

used min-cut to distinguish among objective and subjective documentsgZfteNiu et al. [78]
experimented with applying label propagation to word disambiguation, usinglifferent dis-
tance measures; they report significant improvements when replacimg clistance with Jensen-
Shannon divergence. Goldberg and Zhu [93] apply label propagatia sentiment categorization
task. Their graph construction includes connecting each unlabeledoddé: labeled neighbors
andk’ unlabeled neighbors. This allows control of the supervised vs. thepengsed aspect of
learning (fork’ = 0, the algorithm becomes a supervisedearest neighbors algorithm). Zhou
et al. [232] apply label spreading to the 20-newsgroups documersifadasion task, with encour-

aging results.

2.3.6 Advantages and Disadvantages

When applicable, graph-based SSL has obvious advantages ovéon@dupervised approaches:
the distributionp(x) of unlabeled data provides valuable information for computing an accurate
estimate ofp(y|x), which translates into good predictions on the unlabeled data made with small
labeled sets, and potentially better predictions on the labeled data as wellalktd data is noisy.
Moreover, it turns out that many real-world situations fit the data profijaired by SSL: a relatively

small amount of labeled data plus a large amount of unlabeled data.

An advantage shared by most graph-based SSL algorithms (excdpé feimple mincut algo-
rithm [27]) is that they treat both label inputs and label outputs as redincmus values. This is not
self-evident in all formulations of the algorithms. For example, the canodesdription of the la-
bel propagation algorithm uses discretization of training labels by repiegdabels as Kronecker
vectorsdy(yx), as shown in Eq. 2.3.

Also, output is often discretized too, by meansainf max selection. A natural generalization is
to use soft labels on input (non-degenerated label probability distrilut@rthe labeled samples)
and soft labels on output (skip theg max step). In the case of modeling a continuous function, one
label suffices; the quadratic cost function (Eq. 2.23) ensures a-guaality regression—assuming
the graph reflects similarity across samples accurately. Goldberg an®@Zhexploit this property
to learn a continuous ranking function starting from discrete values @ééscatings of one to four

stars). They use one label with continuous values, initialized with naturabats in{0, 1,2, 3}

22

representing movie ratings. The label propagation algorithm regressegiauous function under-
lying the ratings, and the final step rounds the function to return results gathe form as inputs.
Agarwal [3] describes a semi-supervised method to learn a hieraraiickihg function. Such
versatility of the learned function opens the door to new applications, Suetbast list rescoring
in NLP applications: after labeling with soft labels, test samples can be dartedreasing order
of label value.

On the other hand, constructing the graph is an empirical process tleatseftsearcher’s un-
derstanding of the domain. Graph construction is highly sensitive to theechbgimilarity mea-
sure and its parameterization (exgin Eq. 2.1 and the maximum number of connected neighbors).
There is little theory helping the choice of a similarity measure, which suggestothraany fea-
ture spaces applications make suboptimal choices. Moreover, in HLT apptis, many features
are discrete and heterogeneous (word, part-of-speech, root\&gaus counts, presence/absence
of a characteristic, etc.), and it is unclear how a smooth distance measube cmputed over
such feature sets.

Also, the issue of scalability in semi-supervised learning has so far eztaivad-hoc treatment.
Graph construction prescribes one graph vertex for each samplsparadimes the graph construc-
tion process creates even more vertices to model e.g. additional knovdedgees [93]. A usual
method for increasing scalability is to make the maltreparse by imposing/anearest neighbors or
ane-radius neighborhood. However, there is little systematic study of similarityunesthat are at
the same time scalable (such as slow-growing metrics [114]) and geneiitdlylsdor constructing
good similarity graphs. Moreover, even if the number of edges per visrgatificially limited, the

sheer number of vertices could still be problematic for storing the graphikimgomemory.

23

Chapter 3
GRAPH CONSTRUCTION

As mentioned in Chapter 2, constructing an accurate similarity graph is the mastéamipstep
in achieving good results with graph-based algorithms. Although many alg@rglploiting graph-
based structures exist, the issue of graph construction has remainegiica and crafty process
that has forced each application to develop its own heuristic methods to overttds difficult
step. The fidelity with which the graph reflects similarities among samples inflseumeessful
application of graph-based methods much more than the particulars of thatgafgorithm ap-
plied to the graph. This dependence on task-specific preprocessauyidiges wide, generic use
of graph-based learning. In contrast, other machine learning method$aswneural networks,
support vector machines, or Gaussian mixture models—are more amenalilectoudage with
lightly-preprocessed features using standard tools. A recent sorvegmi-supervised learning
literature [239, § 6.1] notes: “We believe it is more important to constructaa gwaph than to
choose among the methods. However graph construction [...] is noll atudied area.” Other
recent work [238, pp. 9] also mentions: “A good graph should refiacprior knowledge about the
domain. At the present time, its design is more of an art than science.”

In this chapter we present novel approaches to graph construciibra focus on choosing the
similarity measure and on reducing the time complexity of the construction step.ifoartantly,
we propose a hybrid two-staged system using two distinct classifiersfirshelassifier is trained
to predict probability distributions over the label dét . .., ¢}, and the second (the graph-based
learner) uses the probability distributions as its input features. We expairthis setup leads to

good-quality graphs because it obviates many difficulties in choosing a stynitagasure.

3.1 Similarity

The quality of a similarity graph is determined by the choice of similarity measure @samples.

A good similarity measure should obviously ipelicative meaning that two highly similar samples

24

are correspondingly likely to bear the same label. But a good similarity meabkotgd also be
smooth i.e., similarity should vary smoothly, without discontinuities, from highly similar das\p
to less similar samples; in other words, similarity should convey confidenceriafmn. This is
because the extent to which two samples are similar or dissimilar is very importabtaiming
a rich, expressive graph that allows labeling not only by means of dsigttarity, but also by
propagation into neighborhoods. A non-smooth similarity measure will cregtagh in which
clusters have small volume and high density, whereas test points thatisyemmn-confident, or
slightly off the predicted distribution would be far away from any cluster dretefore hard to

classify correctly.

Let us analyze qualitatively how smoothness affects graph quality, tipgeran an extreme

example. Consider working with a similarity measupe that is discretized from an expert estimate

as follows:
0 if expert predictsy # 3’
001 (Xv X/) = (31)
1 if expert predictsy = §
wherey, 5 € {1,...,¢} are discrete label predictions. Such a measure seems rather uninteresting

to use for learning. If it is sometimes unreliable then it conveys no informatimutathe confi-
dence of the prediction; if it is of excellent quality then it obviates the learpmogess in the first
place. However, averaging similarities over a large number of edgesverttie discrete similar-
ity with smoothness information at the cost of a denser graph—and cargggane that requires
more computation during label propagation. Given that each edge is lessative when using
a coarse smoothness, more data points and more edges are necesdafipifty a good-quality
graph. So ultimately a non-smooth similarity measure is still workable if there isgbndata to
bring smoothness information from the edge mesh. Fundamentally, more @fdgesweight ap-
proximate fewer edges with real weight. In the interest of graph cornigtrutme, however, we
are interested in keeping the similarity graph sparse, which leads us to ttlagion that a smooth
similarity measure is needed for fast graph construction. We will define ébded smoothness

criterion for the similarity measure later in this chapter.

25

3.2 Distance vs. Similarity

Consider that a choice of features has been made and a similarity measuteeisiétined. For
certain feature sets, defining a similarity directly is a natural process withgsintuitive backing.
In fact feature sets amenable to intuitive similarity definitions are easy to fintlin€bnsider, for
example, using variable-length strings of tokens (such as, but not limiteebtds, characters, or
syllables) directly as features. The feature space is therefore theddtmsure [147E* over some
alphabet. Such features are not fixed-sized vectors and are best compesetlydor similar-
ity through partial and approximate matching. The BLEU score [180] is aly#aged similarity
measure built around n-gram co-occurrence. Various string keahedging for partial matches and
gaps have recently received increasing attention. Such kernels, egaipute a similarity measure
directly. Chapter 4 uses a string kernel on a Machine Translation experime

However, in many other cases, in HLT as in other domains, features atklérgth vectors of
real numbers (e.g. MFCGrectors, frequency of occurrence, or even scores computed bgna ¢
plementary system) and/or categorical tags and Boolean values (e.ginnoxcabulary, part of
speech, capitalization information). In such cases it is often useful tamefchoosing aimilar-
ity measure into choosingdistancemeasure. This is because vector distances are better studied
and understood; vectorial feature spaces are most often charadtesizdistance measures, not
by similarity measures. Similarities are then obtained from distances throughssi@a kernel.
Given a distancé : X x X — R, a Gaussian kernel defines a family of similarity measuteas

follows [238]:

a0 : X xX—=(0,1] o0a(x,%j) =exp [—W] (3.2)
whereq is a bandwidth hyperparameter, usually optimized experimentally. (Some suibe>
instead ofx?, but that is just a convention meant to simplify certain equations.) For a givéex,
the partial applicatiow, (x, -) defines a Gaussian radial basis function with origim.irAlthough
there is no proof that,, is the optimal way of converting a distance to a similarity measure, strong
empirical evidence shows it to be an appropriate choice. ShepardchesidR01] that similarity—

at least as defined by, and as applicable to, experimental cognitiveseidras an inverse exponen-

IMFCC stands for Mel Frequency Cepstral Coefficients, the domimgnesentation of speech data today.

26

tial relationship to distance, conjecture known as the Universal Law péfadization. This law has
been confirmed in numerous cognitive experiments involving human antiumoan subjects, such
as confusion between linguistic phonemes [162], sizes of circles [§p&¢tral hues as perceived by
people [75] and pigeons [98], and spatial generalization by beesIfé]l cases experiments have
confirmed a dependency of perceived similarity to distance in the form ofvanse exponential.
Chater and Vinyi [43] further argued, with additional experimental evidence, thatter defini-
tion of similarity makes it proportional to the inverse exponential of the sgudigtance, which
follows Eqg. 3.2. They have argued that the same relation holds for nolidEan distances as well,
providing further empirical evidence for using the Gaussian kerneltgearb distances to similari-
ties. (However, this does not imply that the Gaussian kernel is optimal fapngbased algorithm,
which may act very different than the human perceptual system.)

The Gaussian kernel decreases monotonically with distance. The hypergtery controls the
bandwidth or resolution of the kernel by deciding how close two points t@abe in order to be
considered similar. Small values @fmake the kernel highly selective, at an extreme forcing most
test samples at uninformatively high distances from all other samplese lkalges oix engender
the opposite effect of “crowding” the space by making samples indistingbiglsimilar with one

another. Figure 3.1 illustrates thg function for various values af.

oo(x, %)

Figure 3.1: The Gaussian kernel used for converting distances to simdarifiee value of the
hyperparameter controls the aperture of the similarity window.

27

3.2.1 Distance Measures

The o,, function is used to initialize the adjacency matrix of the similarity graptirectly by as-
signingw;; = o.(xi,%;). What is needed then is a distance meaguieat computes an estimated
distance between two samples, and an appropriate choice for hypagtara. The distance mea-
sure does not need to be a metric; positivity and symmetry are theponta facierequirements.
Good accuracy for close-by samples is required for constructing é g@ph, but not at far range
because similarity decays exponentially with distance. As mentioned in § 3tinubnof d is also
highly necessary for creating a good-quality graph.

In the absence of a principled method, generic distance measures forsvae often used,

although it is understood they may not be optimal.

Minkowski Distance An obvious candidate is one of the Minkowski distance measures of grder

P 1/p
Lp(a, b) £ (Z ‘a[z] — bm ‘p> (33)

=1

whereF is the dimensionality of feature vectors, amg is thei'" slot of vectora. Minkowski dis-
tances include the well-known and often-used Manhattan distahaed Euclidean distande’. A
fundamental problem with Minkowski distances in heterogeneous sjsited the unit of measure
on each dimension influences the outcome, which makes it difficult to chqoegar unit for each
dimension. The quantities across dimensions may be largely different evantcomparable be-
cause they have different types (e.g. a real-valued vs. a discrébleaor a frequency value vs. an
amplitude value). The practical negative consequence is that in a hetexmgs space, one of the
dimensions might easily dominate all others and essentially decide singleehatiteemagnitude

of the distance. Therefore, a per-dimension normalization becomessaeges

F 1/p
Lg(a, b) = (Z (07 ‘a[l] - b[z] |p> (34)

i=1
The «; coefficients are often chosen such that they ensure equal sprgastédard deviation

or range) in each dimension. That choice, however, may still be subofignalise some features

might be more indicative than others.

28

Cosine Distance A simple way to avoid relative magnitude issues is to use a distance define as

one minus cosine similarity, quantity often referred to as “cosine distance:”

F
> ayby
=1

a-b
e 9
[all - bl

d(a,b) =1 (3.9)

Cosine distance depends only on the cosine of the angle between the twe feactorsa
andb, quantity independent on the magnitude of the vectors. Ideally the distandd e equally
sensitive in all directions. Therefore, cosine distance works beshiarespaces where features are
homogeneous and orthogonal [148]. For many feature sets theseripgsm@re not guaranteed, so
it is likely that cosine distance is suboptimal. Still, cosine distance is often the clistapasure of
choice in the absence of a proper understanding of the feature speaeaske it is computationally

inexpensive and performs well on many tasks.

3.3 Data-Driven Graph Construction

To construct a quality graph, an optimal distance measure should beTisedruth of the matter
is that in the intricate feature spaces met in HLT applications we do not dlgresise principled
criteria for choosing one particular distance measure (e.g. Minkowskbsime distance), nor do
we have a formal means to preprocess features in ways that make theablpramenable to a
particular distance measure. Therefore, our decisionlesaim a representation of the feature space
that makes it easy to define an optimal distance.

We propose an empirical data-driven technique for graph construdtfas approach is central
to all of our applications of graph-based learning to HLT. The techniquahias a two-pass system
employing two classifiers. First, a supervised classifier is trained on thietebebset to transform
the initial feature space (consisting of e.g. lexical, contextual, or syntaetarfes) into a homoge-
neous and continuous representation in the form of soft label predicfidre soft label predictions
are (predicted) probability distributions over labels, that is, vectors gfttheficontaining positive
real numbers that sum to 1. Then, the soft label predictions are useatae vectordy the graph-

based semi-supervised learner in conjunction with a similarity measure spatitdizprobability

29

distributions. In effect, a supervised predictor is employed as a featursgftrmation device by the
graph-based engine.

Figure 3.2 summarizes the structure of the two-pass classifying system.

(yr,-oyed)

‘
Z Vie; =1
k=1

First-Pass

X; € X——

Classifier

R

Distance Functior

Figure 3.2: Structure of a two-pass learning system. The first-pasdéfielaascepts original fea-
turesx; € X and outputs probability distribution estimatgsover labels. The graph-based learner
uses these estimates as input features in conjunction with a distance funetias $hitable for
probability distribution spaces.

Before explaining how this choice is useful, more detail on the setup is im.ortie first-pass

classifier learns a function

Z:X— |0, 1]5 Z(x) = (z1,...,2¢) (3.6)
14

D oz =1 (3.7)
=1

The Z function is the usual classification function that the supervised classifisrdesuch as
the softmax output of a neural network, the normalized output of a Gaussidure model, or the
outputs of a Support Vector Machine (SVM) fitted to a sigmoid function [183).

The representation obtained at the output of the first-pass classifienisisied as a basis for
measuring similarity among samples that determines the structure of the grapfoue second,
semi-supervised learning step. This approach bears commonalities andruits with previously-

proposed approaches as follows:

« Like cascading classifiers [5], the proposed data-driven leases two classifiers. The cas-
caded classifiers approach first uses a simple and comprehensbifiaria$f that classifier

makes a low-confidence decision, the second classifie—specializeddiirftaexceptions

30

and possibly more computationally-intensive—is consulted. Unlike cascaldisgifiers, our
proposed learner uses the two classifiersdnjunction not indisjunction Our system runs
the second classifier using the first classifier's outputs as input, andasfication deci-
sion is always taken at the output of the second classifier. Other diffesenclude use of a

semi-supervised learner instead of two supervised learners.

 Similarly to principal component analysis (PCA) [202], the proposedagh transforms the
input feature into an intermediate format. Unlike PCA which is an unsuperwistidod, the
proposed approach uses the labels to train the feature transformatioe ang supervised

manner.

» Several proposed approaches [67, 148, 207] learn a distargimitarity measure directly.
Our approach is different in that it learns a feature representatiorsitnatifies the choice
of distance measure. The learner for the transformed features newdmton thet input
samples, whereas a supe(rviseo)l system that learns a distance meaduraimas the con-

t(t—1

siderably more numerousT pairs of samples. (In particular cases computational cost

can be, however, reduced [148].)

The key advantage of using a first-pass classifier is that it moves théepralf defining a
distance measure from a heterogeneous space to a homogeneousf gpabability distributions.

The next section is an overview of distance measures in that space.
3.4 Distance Measures for Probability Distributions

After the features have been transformed into probability distribution \&corariety of distance
functions that are more or less specialized can be applied. The Gaussighik Eq. 3.2 is appli-
cable on top of any such distance.

Below we discuss a few distance measures used for probability distribudilomg with a few

properties of particular interest:
1. Non-negativity:d(a,b) > 0Va,b e X

2. Indiscernibility is identity:d(a,b) =0 < a=bVa,be X

31

3. Symmetryd(a,b) = d(b,a) Va,b € X
4. Triangle inequality:d(a, b) < d(a,c) + d(c,b) Va,b,c € X

Distance measures that satisfy all four properties are called metrics. Assgél, graph-based
learning only requires non-negativity and symmetry. However, there élditional motivation to
pursue distances that satisfy all metric properties. This is because maihaigthat approximate
the graph’s connectivity matrikwith the nearest neighbors of each sample requires that the distance
measure is a metric. The first three properties are naturally fulfilled by nstahde measures; it is

the triangle inequality that may not always be satisfied.

3.4.1 Cosine Distance

Cosine distance—which has already been mentioned above (Eq. 3.50e-stark properly on
probability distributions. Assuming the first-pass learner did learn a goedrdisation function,
the outputs for different labelg andy’ will be close to the Kronecker vectori(y) andd,(y’),
respectively. Such vectors are orthogonal and therefore are cistat 1 (the maximum value of
cosine distance), whereas identical vectors are distanced at 0. Ittis mating that both cosine
distance and cosine similarity are sometimes confusingly referred to as écostric” although
neither satisfies the triangle inequality. It is easy to prove that the cosinaadistathe square of a
metric [129] and that one minus squared cosine similarity is also the squadistéace, proposed

under the suggestive name of “sine distance” [44].

3.4.2 Bhattacharyya Distance

The Bhattacharyya distance is defined as:

¢
dpc(a,b) = —log ¥ /ay by (3.8)
=1

The Bhattacharyya distance is positive and reaches zero only for idedistributions. The

guantity undetog is also called the Bhattacharyya coefficient:

4
BC(a,b) £) " /ayby (3.9)
i=1

32

BC/(a,b) can be zero, which makes the Bhattacharyya distance unbounded-efijeb\to in-
finity whenever at least one of the distributions is zero in each componeahding is not required
but is a very useful property of a distance measure, particularly fmtioal reasons (numeric sta-
bility). Bounding can be achieved by smoothing the two distributions prior to onggsdistance,

for example by parameterized interpolation with the uniform distribution:
1
The parametes: can be chosen on numeric grounds as:

o =

m
7 (3.11)

wherem is the minimum admissible value &fC'(a, b). It is easy to show that for that value af

and form < 1, BC(z,z’) > m.
The Bhattacharyya distance is symmetric and reflexive but does notlubayangle inequality.

The Bhattacharyya coefficient also does not obey the triangle inequmiity/1 — BC'(a, b) does.

This fact motivates the Hellinger distance, which is discussed below.

3.4.3 The Hellinger Distance

The Hellinger distance [184], sometimes called the Jeffries-Matusita distardefined as:

dn(ab) = ;ze: (vam - Mf (3.12)
=1

The Hellinger distance is positive and reaches zero only for equal distiits. Also, it is
bounded to a maximum value of 1. Note that authors may use other multiplicatistantsin
- : , : 1 .
defining the Hellinger distance msteadéqfwe chose the constant that sets its rangé.to]. There

is an easily verifiable relationship between the Hellinger distance and the &fetfga coefficient:
dg(a,b) =+/1— BC(a,b) (3.13)

As mentioned above, the Hellinger distance satisfies the triangle inequalityal$oiseflexive

and symmetric, so it defines a metric over probability distributions.

33

3.4.4 Kullback-Leibler Divergence (and Symmetrized Variant)

The Kullback-Leibler divergence is specific to probability distributions. the discrete case,

Kullback-Leibler divergence is defined as:

dk(a,b) Za[z log (3.14)

b

In addition to being solidly motivated in information theory, the Kullback-Leibieethence has
many desirable properties. By Gibbs’ inequality [108}, (a,b) > 0, and equality is reached if
and only if the distribution are point-wise equédk (a,b) < a = b. However, Kullback-Leibler
divergence is not symmetriaik (a,b) # dkL(b,a) and therefore difficult to use as a distance
measure in graph-based learning.

Symmetry can be achieved in many ways, one of them being simply adgine, b) and
dyi (b, a) [167]:

b
dSKL(a, b) = (a[l] log b[d + b[l] log H) (3.15)

[i] ap)

& @A
I MN I Me\
— —

i
bj) 1 3.16
{(aj) — by)) log bm] (3.16)

This is in fact how Kullback and Leibler originally defined the divergence.

Another issue with the Kullback-Leibler divergence is that it is not bodrédi diverges to in-
finity whenever one componentindistributions predicts near-zero probability and the correspond-
ing component im does not. Also, there is an obvious requirementdgy, to be well-defined
by; = 0 wherevera; = 0 (i.e., the distributions must bebsolutely continuousith respect to each
other [133]). Similarly to Bhattacharyya distance, bounding can be olst#iimeugh smoothing by
e.g. interpolating both distributions with the uniform distribution. The interpola@otor o (see

Eqg. 3.10) can be chosen as:
a=1—te M (3.17)

whereM is the maximum admissible value kang

zy
A method that achieves symmetrizing and smoothing simultaneously is the Jdrmams

divergence, discussed next.

34

3.4.5 Jensen-Shannon (Symmetrized Smoothed Kullback-Leiblery&ncer

The Jensen-Shannon divergence [163, 151], introduced indep#y by Rao [185] and Lin [146],

is defined as
dys(a,b) = Zk(m) ;dKL(b’ m) (3.18)
wherem is the equal-weight interpolation efandb:
myy = 207 Pl (3.19)

The Jensen-Shannon (J-S) divergence also has useful intémpretia information theory. Itis
symmetric, bounded tf®), 1], and defined for any two distributions. Although the Jensen-Shannon

divergence is not a metric, it has been shown that is the square of a nMi&fric [
3.5 Joint Optimization of the First- and Second-Pass Classifiers

The combination of first-pass classifier and graph-based learner éstglobally optimized with
respect to the properties required of the graph. From the viewpointeofthph-based learner,
a good feature space is filled with well-defined clusters that also havegkriurziness” at the
borders to provide adaptation to unseen data. It is worth noting that adtézdture transformation
performed by the first-pass classifier, data does not reside on a maanifgicbre. This is because
the dimensionality of the transformed features is exatGillge same as the number of distinct labels.
This representation is often much more compact and almost always more doeoarg than the

original feature space.

3.5.1 Regularization of the First-Pass Classifier

Regularization of the first-pass classifier is essential in training a goodinethBystem. This
is because often an un-regularized classifier will output very shamfjdent distributions. As
discussed in § 3.1, a discretized, discontinuous similarity measure (obtagimegtéssity from an
equally discretized distance measure) is detrimental to the graph-baseerlearspace with few
and highly-concentrated clusters will not make it possible to predict gdmadddor data falling in

its large interstices. That is why the indecision of the first-pass classifier igriamt: The less

35

confident predictions establish fuzzy cluster borders and “fill” the feaspace with informative
attractors.

Regularization [168] is a common class of techniques aimed at improvingajzadon of clas-
sifiers. Generally, regularization introduces a term in the learner’s tildfanction that penalizes
complex learners. The actual penalty depends on the learner—e.g. maihmhedel parameters,
magnitude of parameters, or conditioning using priors.

In a lexicon learning application (§ 3.6) we ufg regularization during training the first-pass

classifier, a neural network.

3.5.2 Adding and Mixing In Synthesized Data

An advantage conferred by operating in a transformed space is thatadata can be easily synthe-
sized. For example, the Kronecker vedig(y) is the ideal, “golden” data point that predicts lakel
with maximum confidence. In contrast, a uniform vector would be a poinigtf imdecision. Fea-
tures can also be adjusted and combined: the normalized linear combinatiesturief vectors is
also a feature vector. Generating meaningful, highly indicative featwtngeis not possible for
many learning problems. Also, feature preprocessing is usually donerobkem-specific manner.
The output of the first-pass classifier can be manipulated for the pugb@sg. adaptation or
smoothing. It is easy to place Kronecker vectors that act as attractaasdtdle hard labels. We
have implemented several such techniques in a word sense disambiguglicatem described

in 8 3.7 and in an acoustic classification application described in § 3.8.

3.6 Application: Lexicon Learning

We applied the two-pass classifier described above to a part-of-spe@3) lexicon acquisition
task, i.e. the labels to be predicted are the sets of POS tags associated tvittoedin a lexicon.
Note that this ishot a tagging task: we are not attempting to identify the correct POS of each word
in running text. Rather, for each word in the vocabulary, we attempt to inéesd¢h ofpossible
POS tags. Our choice of this task is motivated by the goal of applying thisiteehio lexicon
acquisition for resource-poor languages: POS lexicons are one midsiebasic language resources,

which enable subsequent training of taggers, chunkers, etc.

36

Due to homonymy and polysemy, the same written word often correspondsestalsmeanings,
and in particular—most importantly for this task—some of these meanings may méffetert
parts of speech. Examples are readily available in all human languageaimple, in English,
the word “sport” may, depending on the context in which it's used, measrakierbssynonymous
with “to frolic,” “to trifle,” “to mutate,” or “to boast.” To these we add a femounsenses, such
as “athletic game,” and also aljectivesense, as in “sport shoes.” Distinguishing exactly which
meaning was used in a particular context is a task called word sense disatidrigwhich is the
subject of another experiment described later in this paper. For nowjliheet out to a somewhat
lesser goal, that of deducing the possible parts of speech of all wotbe iexicon of an initially
unknown language. This step, albeit small, is crucial in developing higkrel-linguistic tools,
including word sense disambiguators themselves.

The setup for lexicon learning is as follows. We assume that a small setrdéwan be reliably
annotated by human annotators. From those labeled words, we infes@®%8 the remaining
words by semi-supervised learning. For example, for the word “spibre,'correct outcome of a

POS learner would be:
sport: NOUN VERB ADJ

meaning that in English text, “sport” may be a noun, a verb, or an adjedi®t is missing is as
important as what is present—there are no other possible parts of dpedvd word “sport.”

Rather than choosing a genuinely resource-poor language for thisvaslse the English Wall
Street Journal (WSJ) corpus and artificially limit the size of the labeled bét.igbecause the WSJ
corpus is widely obtainable and allows easy replication of our experimehes.e¥entual applica-
tion would target a resource-poor language such as dialectal Arabitiain case the labeled and
unlabeled data might follow less favorable distributions: In the case of actlitthe labeled subset
would correspond to the standard language, and the unlabeled set eomdidt of the dialect-
specific words.

We use sections 0-18 of the WSJ corpus. The number of unique watdswesthe total number
of samples ig + u = 44 492. A given word may have between 1 and 4 POS tags, with an average
of 1.1 per word. The number of POS tags is 36, and we treat every P@Birtation as a unique

class, resulting if = 158 distinct labels. In order to study the influence of the training set size on

37

the semi-supervised effect, we use three different randomly selecieithgraets of various sizes:
t = 5000, t = 10000, andt = 15000 words, representing about 11%, 22%, and 34% of the entire
data set respectively; the rest of the data was used for testing. Intordeoid experimental bias,
we run all experiments on five different randomly chosen labeled subsdtseport averages and

standard deviations.

Due to the random sampling of the data it is possible that some labels neveirotteutraining
set or only occur once. We train our classifiers only on those labels ¢hat at least twice, which
results in 60-63 classes. Labels not present in the training set will thensdt be hypothesized and
are guaranteed to be errors. We delete samples with unknown labels famltbeled set since
their percentage is less than 0.5% on average. This decision is in keepireynihworld scenario
in which human annotators label a training corpus because in that cassdbied training corpus

would be representative of the language, not random.

Table 3.1 shows the features used to represent words for the pwplesécon learning. The
categorical features are obtained by extracting the relevant wordsrdrfragments from the train-
ing set, indexing them in a dictionary (one dictionary for each of featbygfroughfg) and then
using their index. A special symbol is allocated for an unseen dictiondry. efhis case may be
encountered rather frequently, particularly for small training set sideshave also experimented

with shorter suffixes and also with prefixes but those features tendegjtadk performance.

Qualitatively, the choice of featurgs ¢ relies on the generally applicable supposition that a
given part of speech tends to occur within similar contexts. Feafuresid F;, assume that words
of a given POS tend to have the same suffix—a more language-depsngeosition. In any case,
although it is easy to justify the choice of all features, they are not ortilg&or example, it; is

true thenF} is also true. Other features are also strongly correlated, for exafm@ad F5.

3.6.1 The First-Pass Classifier

For the lexicon learning task, the first-pass classifier is a multi-layer preoteMLP) with the
topology shown in Fig. 3.3. We discuss the MLP topology below in flow ordee: adaptation

layer A, the continuous mapping lay@t, and then the layers h, ando.

38

Feature Type
F The three-letter suffix of the word Categorical
Fy The four-letter suffix of the word Categorical

I3 6 The 4 most frequent words that immediately precede the word in text Cataigerd

Fy Word contains capital letters Boolean

Fy Word consists only of capital letters Boolean
Iy Word contains digits Boolean
F1y Word contains one or more hyphens Boolean
F11 Word contains other special characters (e.g. “&”) Boolean

Table 3.1: Features used for lexicon learning.

P(y | x)
A M
x2 —=— =t]
X3 —— h
W, W
X4 — —t [I n

Figure 3.3: Architecture of first-pass supervised classifier (MLP)eiicon acquisition.

3.6.1.1 The approximation layet

As mentioned, at a minimum, we train the neural network with only 5000 labeledIsaniat

were selected at random from the corpus. This is a scarce scenaemadly considering that some

39

features occur rather infrequently (for examglg or F1; in table 3.1). Severe problems caused
by data scarcity arise when some of the input features of the unlabelat$ Wwaweneverbeen
seen in the training set. For such samples the neural network reads edtraindomly-initialize®l
weight values and consequently outputs arbitrary label predictiongetthsically easy to eliminate
randomness by overwriting untrained values to e.g. zero after trainihthdfact remains that the
neural network makes a meaningless prediction.

The problem of unseen patterns is of course encountered in all meivedrks. What makes
this case different is the presence of categorical features. A neatxabrk working with continuous
inputs can make a meaningful decision on an unseen pattern through theedssontinuity of the
classification function (similar inputs produce similar outputs). In the casatefjorical features,
there is no continuity to be invoked, so an unseen categorical featureta@s entirely untrained
portion of the neural network.

We address this problem by creating an approximation ldy&yuring training,A stores all seen
unique patterns in a hash table keyed by the concatenation of categagpiatsl. iDuring testingA
loads its state and watches for never-seen features. Let us assurfeathiex,; had never been
encountered during training. In that cagefinds the known input feature vecterthat is most sim-
ilar to x (by measuring the Hamming distance between the vectors). #j3es replaced Witl’k’[k],
resulting in vectok = ((x3), .- -, X[p—1), x’[k], X[kt1)s - - - X[F]) that has no unseen features and is

closest to the original vector.

3.6.1.2 The discrete-to-continuous mappér

The input features are mapped to continuous values by a discretettoumus mapping layed/ .
This layer is equivalent to a vertical concatenation of classic neurabmktayers operating on so-
called one-hot inputs, in a setup customarily used for neural networkscatigigorical inputs [15,
14], which we describe below.

One-hot encoding is a simple method of adapting categorical data for ussues network
inputs. If a categorical feature can takedistinct values, presenting an integefin ..., N} inlieu

of a real number at the input of the MLP would be mistaken because it irdesdartifact magnitude

2Neural network initial weights are customarily initialized with small random e@sluA neural network trained with
discrete inputs may never update some weights if certain inputs are eever s

40

and ordering among samples. For example, the neural network “thinkisVahses1 and N are
much farther apart than valuéé — 1 and N and tries to learn a smooth classification function
under that assumption. However, categorical values should be eqistilyct (apart) from one
another, and the learning process should be immune from the particulaalmaimbers assigned
to the input categories. Therefore, categorical inputs are commonlygeddbrough the following

mapping function:
H:{l,...,N} = {0,1}Y H(i) = n(3) (3.20)

wheredy (i) is the Kronecker vector of lengtN with 1 in position: and 0 elsewhere. The represen-
tation obtained this way is called the one-hot vector encoding of the cataebesloe. When using
one-hot encoding, the Hamming distance between any two distinct inputs &ntiee and therefore
the result of the learning process does not depend on the particulamgabpategorical values to
numbers in{1,..., N}.

Let us analyze the transfer function for a neural network layer dipgran a one-hot-encoded

input. The transfer function of a neural network layer can be generafiyessed as:
/ —>
f:RYN RN f(H)= ¢ (Hw+ B) (3.21)

where N’ is the number of outputs of the layer (fixed at system design tifiels the input (in
our case a one-hot vector), € RV*Y is the weights matrixB € R" is a bias vector (both
andB are learned model parameterg), R — R is the activation function (chosen during design),
andg (A) applies functionp to each element of vectod. It would appear that using one-hot
encoding is memory- and computationally-wasteful because it makes a sipgteiccupy anv-
dimensional vector. For large values &1, the multiplication would be computationally intensive
when implemented directly. However, we can use the information Bh& a one-hot vector in

rewriting the layer’s transfer function (after eliminating all zero terms) devis:
f:{1,... N} =R f(i)= ¢ (wrowi + B) (3.22)

So a simple method of obtaining the output of a one-hot vector coupled taa@ network layer
is to simply add the™ row of matrixw to the biases vector and then applyo each element of the
result. There is no more intermediate one-hot vector to use and no mones@sgmatrix-vector

multiplication.

41

There are two further simplifications we make to the transfer function. Givatnwe already
have biases and a nonlinear activation function in the downstream hidgkem ila this layer we
choosep to be the identity function and we do not use a biases vector, so the tré&unst&on for

the continuous mapper simplifies down to:
F{l,. . N} =RV f(i) = wrows (3.23)

This way the continuous mapping layer becomes computationally negligible bdtigdise
and during training, as training only affects the responsible row and aaritire matrix. This last
property in fact may leave weights of entirely untrained for unseen categorical features. Ahe

layer situated befor@/ prevents that situation from occurring.

3.6.1.3 The nonlinear hidden layer and the output layer

The continuous mapping layéd cascades into a classic neural network with input layaidden
layer h, and output layeb. To avoid potential confusion, we only count the number of hidden
layers. As such, the neural network in Figure 3.3 has a total of two hildgens, one more than a
standard topology.

The activation function of the second hidden layer is based on the hyliethngent func-

tion [134]:
on(x;) = 1.7159 tanh <§SL‘Z> (3.24)

Finally, the activation function of the last layer is the softmax function that sr@islinear and

in addition ensures a normalized output:

eX ()

= 37
Z eT()
j=1

bo(T;) (3.25)

3.6.1.4 MLP training

The entire network, up to and including tié layer, is trained via backpropagation [190, Ch. 7].

The approximation layed is not trained as its transfer function is predefined. The training criterion

42

minimizes the regularized mean squared error on the training data:

1 n
L= (P(ylr.6) = 6u(y))* + R(0) (3.26)
t=1
wheref stands in for all parameters of the neural network (the values of all weigtrices), and?
is a regularization term. We used &n regularizer [169] that penalizes large values of the weight
matrices. The regularizer is implemented by reducing each weight charegébtor proportional

to the magnitude of the weight itself.

3.6.2 Graph-Based Learner Setup

We use a dense graph approach in conjunction with the iterative apptodabel propagation.
Convergence is stopped when the maximum relative difference betweealties computed in two

consecutive steps is less than 1%.

For data size reasons, we apply label propagation in chunks. While thiadraet stays perma-
nently in memory, the test data is loaded in fixed-size chunks, labeled, araddbg. This approach
has yielded similar results for various chunk sizes, suggesting that iciguiska good approxima-
tion of whole-set label propagation. In fact, experiments have shovirp#réormance tends to
degrade for larger chunk sizes, suggesting that whole-set LP migtitdmted by “artifact” clusters
that are not related to the labels. LP in chunks is also amenable to paralletizatiosystem labels

different chunks in parallel.

We trained thex hyperparameter by three-fold cross-validation on the training data, asing
geometric progression with limits1 and10 and ratio2. We set fixed upper limits of edges between
an unlabeled node and its labeled neighborsstand between an unlabeled node and its unlabeled
neighbors td. The approach of setting different limits among different kinds of nodatssused

in related work [93].

For graph construction we tested: (a) the original discrete input reptason with cosine dis-
tance; (b) the classifier output features (probability distributions) withéheeh-Shannon distance.

These combinations were determined to be the best in several initial exptrimen

43

3.6.3 Combination optimization

The static parameters of the MLP (learning rate, regularization rate, anderwf hidden units)
were optimized for the LP step by 5-fold cross-validation on the training d@itas process is
important because overspecialization is detrimental to the combined systenverspeazialized
first-pass classifier may output very confident but wrong predictimngfseen patterns, thus placing
such samples at large distances from all correctly labeled samples.

Regularization during backpropagation is crucial for achieving goocdotimess of the com-
bined system. Trained without regularization, neural networks tend ttupeolow-entropy, highly
confident classifications. As discussed in 8§ 3.1, such an output is detainfi@mnthe label propaga-
tion stage. Therefore we use a strong regularization coefficient taticeendency of the MLP to
issue low-entropy outputs. A strongly regularized neural networkpbyrast, will output smoother
probability distributions for unseen patterns. Such outputs also resultioatker graph, which in
turn helps the LP process. Thus, we found that a network with only 1Zhiddits and relatively
high R(0) in Eq. 3.26 (10% of the weight value) performed best in combination with ttRufa

insignificant cost in accuracy when used as an isolated classifier).

3.6.4 Results

Table 3.2 summarizes the experimental results obtained. We first condanategeriment to mea-
sure the smoothness of the underlying graptt), in the two LP experiments according to the

following formula:

S(Q) = > wij (3.27)

yi#y;,(i>nVji>n)
wherey; is the label of samplé (Lower values are better as they reflect less affinity between nodes
of different labels.) The value @&¥(G) was in all cases significantly better on graphs constructed
with our proposed technique than on graphs constructed in the standgirgb@e Table 3.2). The
same table also shows the performance comparison between LP over theedispresentation and
cosine distance (“LP”), the neural network itself (“NN”), and LP otlee continuous representa-
tion (“NN+LP”), on all different subsets and for different trainingessz For scarce labeled data

(5000 samples), the neural network—which uses a strictly supervisethygprocedure—is at a

44

clear disadvantage. However, for a larger training set the neurabriete/able to perform more
accurately than the LP learner that uses the discrete features dire@lthifich combined technique
outperforms the first two significantly. Significance was tested using arelifte of proportions
significance test; the significance level is 0.01 or smaller in all cases. Tieeedites are more
pronounced for smaller training set sizes. Interestingly, the LP is ablettaceinformation from

largely erroneous (noisy) distributions learned by the neural network.

Initial labels Model S(G) avg. Accuracy (%)

Setl Set2 Set3 Set4 Set5 Average

5000 NN — 50.70 59.22 63.77 60.09 5458 5786£74.55
LP 45154 58.37 59.91 60.88 62.01 59.47 60i13.24
NN+LP 409.79 58.03 6391 66.62 6593 57.7662.45+ 3.83

10000 NN — 6586 6019 6752 6568 6564 648849
LP 381.16 58.27 60.04 60.85 61.99 62.06 60i64.40
NN+LP 31553 69.36 64.73 6950 70.26 67.7168.31+1.97

15000 NN — 6985 6642 7088 70.71 7218 704£811.94
LP 299.10 5851 61.00 60.94 6353 60.98 60199.59
NN+LP 235.83 7059 69.45 69.99 7120 73.4570.94+1.39

Table 3.2: Accuracy results of neural classification (NN), LP with discfeatures (LP), and com-
bined (NN+LP), over 5 random samplings of 5000, 10000, and 150f#)dd words in the WSJ
lexicon acquisition taskS(G) is the smoothness of the graph (smaller is better).

3.7 Application: Word Sense Disambiguation

The second task is word sense disambiguation using the SENSEVAL-3ddsil], which enables
a comparison of our method with previously published results. The goal isam@iguate the
different senses of each of 57 words given the sentences within wheghoccur. There are =
7860 samples for training and = 3944 samples for testing.

In line with existing work [135, 78], we use the features described in Tat3e However,

syntactic features, which have been used in some previous studies oatdsstd164], were not

45

included.
Feature Type
Fy 3 POSs of the previous 3 words CategorisaB
F, ¢ POSs of the next 3 words Categoricalx 3
Fy POS of the focal word itself Categorical

Fg 92 Local collocationsC_; _1, C1,1, C_2 2, C22, C_o 1, C_1;1, Categoricalx 15
C12,C3-1,0.21,C_12,C13,C_31,C_32,C_23,andC_ 3
(see text for details)

Fs.. A bag of all words in the surrounding context Categoricab

Table 3.3: Features used in the word sense disambiguation task.

We used the MXPOST tagger [186] for POS annotation. The local collowatip; are con-
catenated words from the context of the word to disambiguate. The fimitd; are the boundaries
of the collocation window relative to the focal word (which is at index zefdie focal word itself is
eliminated. For example, for the sentence “Please check this out” and #ilenoid “check,” col-
locationC'_ 5 is pleasethis_outand collocatiorC'_, ; is e_pleasethis, wheree is a special symbol
standing in for the void context.

Related work on the same task [135] uses collocationg 1, C11, C_2_2, Ca2, C_2 _1,
C_11,C12,C_3-1,C_91,C_1 2, andC] 3 as features. In addition to those, we also used ;,
C_39, C_93, C_1 3, for a total of 15 distinct collocations. The extra features were selegted s
tematically by applying a simple feature selection method: a featiseselected if the conditional
entropy H (y|z) is above a fixed threshold (1 bit) in the training set, and @so occurs in the test
set (note that no label information from the test data is used for this peixpos

We compare the performance of an SVM classifier, an LP learner usirgathe input features
as the SVM, and an LP learner using the SVM outputs as input featuresmalyrze the influence of
training set size on accuracy, we randomly sample subsets of the trainn@88o, 50%, and 75%)
and use the remaining training data plus the test data as unlabeled data, similagytocedure

followed in related work [78]. The results are averaged over five ifferandom samplings. The

46

samplings were chosen such that there was at least one sample for leglcin ldoe training set.
SENSEVAL-3 sports multi-labeled samples and samples with the “unknownl. | eliminate

all samples labeled as unknown and retain only the first label for the multethbestances.

3.7.1 SVM First-Pass Classifier Setup

The use of SVM vs. MLP in this case was justified by the very small training skttaAn MLP

has many parameters and needs a considerable amount of data fiwvesffamning, so for this task
with only on the order ofl0? training samples per classifier, initial testing deemed an SVM more
appropriate. We use the SV package [112] to build a set of binary classifiers in a one-versus-all
formulation of the multi-class classification problem. The features input to®¥&hconsist of the

discrete features described in Table 3.3 after feature selection.

We defined one SVM per target label and we trained it to discriminate that aglaénst the
union of all others, setup that is commonly used and known as one-vaisusining [69]. We
evaluate the SVM approach against the test set by using the winnerathkésitegy: the predicted

label corresponds to the SVM that outputs the largest value.

3.7.2 Label Propagation Setup

Again we set up two LP systems. One uses the original feature spagddaftee selection, which
benefited all of the tested systems). The other uses the SVM outputs as iitspstleBoth use a
cosine distance measure. Note that this experiment is to some extent aticexreyn the others
in that it does not use probability distribution as its input. Instead, it simply teeancalibrated
outputs of the SVM, which are theoretically unbounded and practically lierarthe rangé—1, 1].
For that reason, the distance measures discussed for probability distrébare not applicable, so
we applied cosine distance. A possible alternative is to fit the SVM outputs smadizn and then
normalize the results [182, 145]. We chose to use the SVM outputs directlgder to explore

applicability of LP on first-pass classifiers with non-probabilistic outputs.

The« hyperparameter (Eqg. 3.2) is optimized through 3-fold cross-validationeotraining set.

a7

3.7.3 Combination Optimization

Unlike MLPs, SVMs do not compute a smooth output distribution. Instead, dheyrained for
targets -1 for one label and 1 for the other label, and base the classiiicktision on the sign
of the output values. In order to smooth output values with a view towaajshgronstruction we

applied the following techniques:

1. Combining SVM predictions and perfect feature vectdkfter training, the SVM actually
outputs wrong label predictions for a small numberi%) of training samples. These outputs
could simply be replaced with the perfect SVM predictions (1 for the truesclaslsewhere)
since the labels are known. However, the second-pass learner mightlabenefit from
the information contained in the mis-classifications. We therefore linearly cortiergVM
predictions with the “perfect” feature vectovsthat contain 1 at the correct label position

and -1 elsewhere:
s;=si+ (1 =7)vi (3.28)

wheres;, s; are thei input and output feature vectors ane parameter fixed at 0.5.

2. Biasing uninformative distributiong=or some training samples, although the predicted class

label was correct, the outputs of the SVM were relatively close to one enath the decision
was borderline. We decided to bias these SVM outputs in the right directiogibyg the same

formula as in Eq. 3.28.

3. Weighting by class priorg=or each training sample, a corresponding sample with the perfect

output features was added, thus doubling the total number of labeled imdtie graph. These
synthesized nodes are akin to “dongle” nodes as used by Zhu andeBpl@38, 93]. The
role of the artificial nodes is to serve as authorities during the LP proces®amphasize

class priors.

3.7.4 Results

As before, we measured the smoothness of the graphs in the two labelgptigm setups and

found that in all cases the smoothness of the graph produced with ourdnett®better when

48

compared to the graphs produced using the standard approachwasishtable 3.5, which also
shows accuracy results for the SVM (“SVM” label), LP over the statidpmaph (“LP"), and label
propagation over SVM outputs (“SVM+LP”). The latter system consistgogisforms best in all
cases, although the most marked gains occur in the upper range of laheiptes percentage. The
gain of the best data-driven LP over the knowledge-based LP is simtific the 100% and 75%

cases.

System Acc. (%)
1 htsa3 [96] 72.9
2 IRST-kernels [211] 72.6
3 nusels [136] 72.4
4 SENSEVAL-3 contest baseline 55.2
5 Niu etal. [78] LP/Jensen-Shannon 70.3
6 Niu etal. LP/cosine distance 68.4
7 Niuetal. SVM 69.7

Table 3.4: Accuracy results of other published systems on SENSEVAy8&tems 1, 2, and 3 use
syntactic features; 5, 6, and 7 are directly comparably to our system.

For comparison purposes, Table 3.4 shows results of other publiststeirsy against the
SENSEVAL-3 corpus. The “htsa3”, “IRST-kernels”, and “nusetgjstems were the winners
of the SENSEVAL-3 contest and used extra input features (syntackitiores). The Niu
et al. work [78] is the most comparable to ours. We attribute the slightly higlonmance of
our SVM due to our feature selection process. The LP/cosine systenyssearssimilar to our LP
system using the discrete features, and the LP/Jensen-Shannon sysiemsimilar but uses a

distance measure derived from Jensen-Shannon divergence.

3.8 Application: Acoustic Classification

Perhaps the most complex systems used in HLT today are dedicated to aut@@etic grocessing.
Here we will focus on acoustic modeling, one relatively well-delimited andiafieed aspect of

speech processing.

49

Initial labels Model S(G) avg. Accuracy (%)

Setl Set2 Set3 Set4 Set5 Average

25% SVM — 6294 6253 6269 6352 6299 62483.34
LP 4471 63.27 6184 63.26 62.96 63.30 62498.56
SVM+LP 39.67 63.39 63.20 63.95 63.68 63.9163.63+0.29
50% SVM — 6790 66.75 6757 67.44 66.79 6729.45
LP 33.17 67.84 66.57 67.35 66.52 66.35 66498.57
SVM+LP 2419 6795 6754 67.93 6821 68.1167.95+ 0.23
75% SVM — 6954 7019 6875 69.80 68.73 6940.58
LP 29.93 68.87 68.65 6858 6842 67.19 68130.59
SVM+LP 16.19 69.98 70.05 69.69 70.38 68.9469.81+ 0.49
100% SVM — 70.74
LP 21.72 69.69
SVM+LP 13.17 71.72

Table 3.5: Accuracy results of support vector machine (SVM), labmdgmation over discrete fea-
tures (LP), and label propagation over SVM outputs (SVM+LP), fomibed sense disambiguation
task. Each learner was trained with 25%, 50%, 75% (5 random samplinlgs ead 100% of the
training set. The improvements of SVM+LP are significant over LP in the 75&0180% cases.
S(G) is the graph smoothness.

From a modeling standpoint, speech recognition can be described byuthigoag

W= argvllf/naXP(W|X) (3.29)
whereX = 125 ... is the acoustic observation sequence, HAe: wiws . . . is the corresponding
estimated word sequence. The large task of estimétirfgom X can be simplified with the help of
phone recognition, where the sequence of wdidss replaced with a sequence of phones out of a
possible phone vocabulary. The task could be simplified further by remé®mporal information.

In that case, a sequence of phonetic observations predicts a single, ghek known aphone
classification We will focus our next experiment on a phone classification task.

One important challenge for phone classification and speech recognitgenaral is finding

50

a good representation of the speech sigkialspecifically, extracting indicative features from the
audio signal.

Today, frequency domain representations are the dominant approéefitiioe extraction for
speech. A widely used feature representation is known as the MeldfregCepstrum Coeffi-
cients (MFCC) [63]. Bogert et al. introduced the notion of cepstrumafaamgram of “spectrum”)
in 1963 [31]. The cepstrum of a signal is the Fourier transform of tiveep@pectrum of the sig-
nal. The signal is applied the Fourier transform once, then the powetameld by squaring the
transform, then the logarithm is applied to express power in decibels (d&Jjrally the cepstrum
is obtained by applying the Fourier transform again to the power in dB. ©hbld application of
the Fourier transform reflects the cepstrum’s ability to capture relatively woiations in the fre-
guency spectrum of the input signal. The double transform can bezauHike a regular signal, and
notions such as quefrency and liftering have been defined by furthiséranagram metaphor [113].
It has been shown experimentally [63] that such slow variations of thepspectrum are indicative
features of the speech signal.

The MFCC method is specialized for speech by being perceptually-motivatedhuman ear
has a specific and nonlinear frequency response, and the humeelakcapability of understand-
ing speech motivates imitation of at least the early stages of the hearing sygtarn,are easily
measured and relatively well understood. MFCC therefore approxirttegésiman ear’s frequency
response by warping the power-frequency spectrum obtained afibrirzg the Fourier transform
into a different spectrum by using an empirical function known as the Mguency. Furthermore,
the warped power spectrum is filtered through a series of band-pass fiéeh having a triangular-
shaped response [105, Ch. 6]. The purpose of the filtering is to allpwden-sampling of the
signal without aberrations caused by . A notable difference from tlesicl@epstral transform is
that the second transform applied is Discrete Cosine instead of Fotiters been experimentally
showed that the Discrete Cosine instead of Fourier yields better spestanefethan the Fourier
transform [36]. The importance of the function parameters decreadatethwir order. Application
commonly use the first 13 coefficients (the continuous components at eaftency), to which
three more coefficient sets may be added, each containing 13 coeffi¢ehntise 1-2 Hz modula-
tion energy; (b) the 3—15 Hz modulation energy; and (c) the 20-43 Hz latiolu energy, for a total

of 52 possible coefficients. Our experiments use the first 26 coefficients

51

Contemporary acoustic modeling approaches are typically using a trietitaagechnique: after
sound acquisition and extraction of MFCC features, a hidden Markov Infidi#M) with Gaussian
mixture (GM) probabilistic models is being trained. Today’s state-of-theyatems further improve
accuracy and robustness by using discriminative training and adaptatést ttata using techniques
such as MLLR [86] or MAP [89].

Several alternative or complementary approaches have been explohediast, including dif-
ferent ways of modeling output distributions, such as Support VectmhMas (SVMs) [87] and
neural networks [33], as well as novel training techniques, suchrge-faargin training [198].
However, adoption of new methods by the mainstream ASR community haslbeemsith some
exceptions [233, 210]—mainly because the standard methodology is weliitefficient, and easy
to use, and also because new models or learning procedures oftehstaleovell to large datasets.
Exploration is difficult mainly because of the data sizes involved: training eMeighly optimized
speech recognition system takes hours or days. On such large dasaphtsticated machine learn-
ing methods are hardly applicable, even if they are theoretically superca@rneve good results
on artificial or small tasks. A field researcher or developer would bestbier inclined towards
spending time on incremental improvements on the existing techniques insteamgfragically
new approaches that are liable to have an extremely long experimentalitydeld be argued that
due to sheer data size, the ASR community is forced to improve on relativelynedrstood local
optima instead of exploring in search of qualitatively better approaches.

Continued progress in ASR, however, does require exploring n@gebaches, including new
machine learning techniques, as well as adapting these to large data s¢ie aodnputational
constraints that present-day ASR systems are subject to. In the follovengwestigate graph-
based learning as a way to improve over standard acoustic models.

Applying graph-based learning to speech is a potentially advantagedeaw. As discussed,
graph-based classification enforces global consistency acrosadraimd test samples, so it is in-
herently adaptive. In contrast, related traditional systems (such asst@gighbor) only rely on
similarity between the test and training samples. Graph-based learning iditypizd in a semi-
supervised, transductive setting where a relatively small amount of thtata is used in conjunc-
tion with a large amount of unlabeled data. However, as we will show belganitlso be used as a

post-processing step applied to a standard supervised classifier traiaddrge amount of labeled

52

data and tested on a small amount of unseen data, which is the typicalis@esaeech processing.

In this case, graph-based learning provides a form of adaptation tostidata by constraining the

decisions made by the first-pass classifier to accommodate the underlyctgretrof the test data.

On the other hand, applying graph-based learning to acoustic classificaites unique chal-

lenges:

 Similarity measure:As discussed in Chapter 2, choosing an appropriate similarity measure

is key to graph-based learning. It is unclear what similarity measure waulopbmal in

acoustic feature spaces.

» Adaptation to Sample Size Discrepan®yriginally, graph-based learning was formulated for
semi-supervised scenarios, where a large amount of unlabeled butl asmant of labeled
data are present. In many speech processing applications, we findpbsitegsituation. In
these cases, graph-based learning can still be of benefit due to tlaé@dobkistency assump-
tion it enforces, thus effectively implementing adaptation in a differentesdras commonly

used. However, this requires changes to the basic algorithm.

 Scalability: Acoustic data is typically available in large quantities. Constructing a full similar-
ity graph would be feasible only for very small speech corpora. We widlidis our approach

to scalability of phone classification in Chapter 5.

We describe in the following subsections how our system addressesdhabenges. The

setup consists of the two-pass system described in 8 3.3 in conjunction wgand&hannon di-

vergence (8 2.3) as a distance measure. Results on an 8-class vesifieriare presented with the

goal of demonstrating the effect on speaker adaptation. Our appimactves significantly over

state-of-the-art adaptation algorithms.

3.8.1 Adaptation to Sample Size Discrepancy

Adaptation is an important challenge in speaker-independent ASR syslensl propagation is

inherently adaptive because it uses the self-similarity of the test data in adwitibe similarity of

53

the test data with the training data. To properly exploit the adaptive natlabefpropagation, we
operate a simple but essential change to the mitrix

First, let us consider the situatian > u. This is the case when a speech classification or
recognition system is trained against many hours of data and then pkadmtef utterance, such
as a phrase or sentence. The samples of the test utterance will bear similggs/with the training
samples and also similarity edges with other test samples. Given that there @remore many
labeled samples than unlabeled ones, and also that similarity is additive (perefin 5.4.2), it
follows that the accumulated similarity with labeled data will be much stronger thasirttilarity
with unlabeled data, even when similarity with each individual training sample it smaller than
similarity with other test samples.

A graph-based learner in which the edge weights linking unlabeled to labateples are much
stronger than edges linking unlabeled samples with one another will degemn®o an unsophisti-
cated nearest-neighbor classifier: random walks will be always or akhways absorbed directly
by labeled vertices, therefore test samples will be labeled in proportion sxtwmulated connec-
tion strength for each label.

If only the k£ nearest neighbors are used in building the graph, the effect is lessysroed but
still present. Due to the large quantity of training data, the likelihood of finding sirtrééning
data is higher, so thke top slots may be saturated with similar entries, which lead to strong weights
after summation. In contrast, even though one or a few unlabeled negghtagr be very similar,
the dearth of unlabeled samples means that unlabeled-unlabeled commectostill at a large
disadvantage. Even a relatively low threshold such as10 means a handicap of up to one order
of magnitude for the unlabeled-unlabeled connections.

To benefit of adaptation, we want to manipulate the density of the graph iegianrof the test

utterance. We achieve this by adjusting linking unlabeled samples with one another by:
t . .
Wij < o Wij Vi>t,j>t (3.30)

This artificially simulates that there are as many test as train samples, greathcerdthe adap-
tive properties of the algorithm. Although simple, this adjustment is extremelgteie without it,
the classification degenerates in nearest-neighbor (i.e., the label ptigmealgorithm converges in

exactly one step). We confirmed experimentally that the unadjusted graphimgproves upon the

54

first-pass classifier.

3.8.2 Interpolation with Prior Distributions

For the training set we have access to the true labels and consequentlgdatble prior probability

distributions:

Pgl = «01, ce 7Oyi—17 1Yi70Yz'+1? ey 0g>> = 61:(}’1) (331)

(0¢(n) denotes a Kronecker vector of lengthwvith 1 in then™ position and 0 elsewhere.) These
prior distributions represent the ground truth, so they are highly infove&dr classification. Using
them exclusively, however, would lose smoothness information, so thmyldstest be used in
interpolation with the soft predictions resulting from the first-pass classifiering against its own
training data. We chose an equal-weight interpolaﬂ%%ﬁ throughout our experiments.
Interpolation with priors is interesting from two perspectives. First, intatpn achieves a
similar effect to Zhu’s dongle vertices [238, § 4.6]. Zhu suggested aockssfully used additional
labeled vertices (that he called dongle vertices) that encode additiomalddge about data, such
as the predictions of an external classifier. For example, each unlatmigole may be linked to
a dongle node that bears a label (soft or hard) as predicted forahgile by another classifier.
The strength of the connection is commensurate to the desired influence adidhi#zonal classifier
over the label propagation process. On the manifold approximated by dpé,ghe presence of
dongle vertices creates additional labeled “holes” that attract randdks waginating in unlabeled
vertices and as such bias the labeling process. In effect, dongle satiarge labeled point density
on the manifold in the vicinity of unlabeled points. Interpolation achieves a sinfilactdy only
changing feature vectors and consequently connection weights, wakldinng any new vertices.
In fact, after graph reduction (8§ 5.4) is taken into account, the manifolelatsvtself as a space
with exactly ¢ labeled attractors, one for each label. Interpolation of weights with thed€kar
vectors is equivalent to adding dongle vertices for the correspondingis of the space that encode
maximally confident label decisions. This has the effect of compensatirgytematic errors and
the noise sensitivity of the first-pass classifier. An important aspect isnegipolation does not
impact graph size and scalability; in contrast, adding dongle vertices sectieanumber of vertices

and may increase the size of the associated matpigesnd/orPy..

55

The second interesting aspect of interpolation is that it directly usefesiares-labelsiuality,
a property of the two-pass classifier. In the graph-based systemiefeaiod labels have the same
semantics, whereas in a traditional classifier, features and labels belaigfitat spaces. The
duality allows us to mix them by injecting the label-derived Kronecker vectaestive features of

the labeled samples by simply averaging the two.

3.8.3 Data

We performed experiments on an 8-vowel classification task collecteddovabal Joystick (VJ)
project [118], whose goal is to develop voice-controlled assistiveedsyor individuals with motor
impairments. In the typical setup, a VJ user can exercise analog, corgigoatrol over mouse
cursor movements by using vowel quality, pitch, or loudness. One of ttnpaoents of the VJ
system is a speaker-independent vowel classifier whose outputdgaisentrol, for example, the
direction in which a mouse cursor moves. In this and similar scenarios, photassification that
is robust against speaker variation is of utmost importance in order to ejertion of the system
by the user due to inaccurate recognition of control commands.

For training this classifier, a corpus was collected consisting of 11 hduecorded data of

which we selected a subset. The sizes of the train, development, andsestedshown in Table 3.6.

Set Speakers Samples Non-silent audio
Training 21 420 10° 1.16h
Development 4 20010° 0.56h
Test 10 8010° 0.22h

Table 3.6: Training, development, and testing data used in the Vocal Joggpiekiments.

This scenario is a good test bed for our proposed approach sinc&eadyatuned, high-
performing baseline system with standard adaptation methods exists fortthgetlan addition, the
focus on phonetic classification allows us to focus on the acoustic modelsiginileng e.g. lan-

guage model and search effects that would characterize largeuwlagalystems. At the same

56

time, this corpus is vastly more realistic than the toy tasks used in machine leantagt €ontains

hundreds of thousands of samples.

3.8.4 Experiments and Results

We tested our phone classification system by directly using the outputs afshelassifier on the VJ
corpus to date, created by Li [144]. Li's classifier is a multi-layer paroep(MLP) enhanced with
a regularized adaptation algorithm. The adaptation algorithm uses a reguliuat prevents the
regularized model diverging too much from the unadapted system, thidiray@vertraining on
adaptation data. We used the same MLP (50 hidden units and a window sizaimiples) and the
same adaptation algorithm as Li.

We apply our system to both the non-adapted MLP outputs and the adappedsoun each
case, a graph (of reduced size using the result of Proposition 1) wilagdo each test utterance,
after which iterative label propagation was applied to the graph. As aitiadd baseline we
use GMMs (a) without adaptation and (b) with MLLR adaptation. The adapt&tkperiments
used 5-fold cross-validation, each time using a held-out part of thedtsta computing adaptation
parameters. The results are shown in Table 3.7. Boldface numbers mifeeaigly better than the
comparable baselines.

The similarity of choice was Jensen-Shannon divergence; to confirhit tisaa good-quality
distance, we compared it with development set performance for two comyueaty distance
measures: Cosine distance and Euclidean distance. They both eragkihilgiier error rates

(22.62+11.23% for Cosine and 22.48.1.00% for Euclidean).

3.9 Discussion of the Two-Pass Classifier Approach

In this chapter we investigated a two-step procedure for graph cotistribat uses a supervised
classifier in conjunction with a graph-based learner. The advantagestwfo-pass classifier system

are:

» Uniform range and type of feature$he output from a first-pass classifier can produce well-

defined features, in the form of posterior probability distributions. This ehtemthe problem

57

Model Error Rate (%)

Dev Test
GMM, no adaptation n/a 39.62
MLP, no adaptation 24.8110.69 31.9%9.39

MLP+GBL, no adaptation 21.9110.52 28.7512.31

GMM-+adaptation n/a 20.053.76
MLP+adaptation n/a 12.183.51
MLP+adaptation+GBL n/a 8.32t3.21

Table 3.7: Error rates (means and standard deviations over all speakarg a Gaussian Mixture
Model (GMM), multi-layer perceptron (MLP), and MLP followed by a ghapased learner (GBL),
with and without adaptation. The highlighted entries represent the bestrate by a significant
margin (< 0.001).

of input features having different ranges and types (e.g. binarynuftivalued, continuous

vs. categorical attributes) which are often used in combination.

» Feature postprocessingrhe transformation of features into a different space also opens up
possibilities for postprocessing (e.g. probability distribution warping) deipg on the re-
guirements of the second-pass learner. In addition, specialized disteaseires defined on
probability spaces (8§ 3.4) can be used, which avoids violating assumptiatesimganetrics

such as Euclidean and cosine distance.

« Optimizing class separationThe learned representation of labeled training samples might
reveal better clusters in the data than the original representation: a disatiiraip-trained
first pass classifier will attempt to maximize the separation of samples belongiiféetent
classes. Moreover, the first-pass classifier may learn a featureamanagion that suppresses

noise in the original input space.

Difficulties with the proposed approach might arise when the first-passifidayields confident

but wrong predictions, especially for outlier samples in the original sgamethis reason, the first-

58

pass classifier and the graph-based learner should not simply beemeatea without modification,
but the first classifier should be optimized with respect to the requiremetite second.

Experiments suggest that the resulting system combines the strengths ofdssifiers. The
first-pass classifier offers the graph-based learner a uniform anditoensional feature set to work
with. That feature format is better suited for an optimally-functioning distaneasure. Measure-
ments put the proposed two-pass approach to classification in contrast mitine traditional ap-
proach of using stock distance measures on top of the raw featuragtsReww that the approach
using the outputs of the first-pass classifier as features for the gemglttHlelassifier is superior to
the conventional approach.

Next chapter will mark a departure from the experimental setup discudsae. Instead of
using fixed-length real-valued vectors as features and discrete Ebebywe will focus on defining
a theoretical and practical framework for applying graph-based ifgato structuredinputs and

outputs.

59

Chapter 4

GRAPH-BASED LEARNING FOR STRUCTURED INPUTS AND OUTPUTS

The theoretical study and practical applications introduced in Chapted&uSaussian similar-
ity kernel to compute a similarity graph. The similarity kernel worked on top a$tadce measure,
which in turn was defined over fixed-length vectors containing eitherlgmolspecific features or
probability distributions obtained from a first-pass classifier. The inputseactierall learning
system were always unstructured—fixed-length feature vectorsioimgtaeal numbers. Certain
features had Boolean or categorical values, in which case we toolakpezasures to transform
them into real-numbered values, such as the one-hot approach (8§ 3.6le3redicted labels were

categorical as well (e.g., POS tag or word sense).

It is worth noting that in the applications presented above, the componetits fput vector
did sometimes exhibit interdependence, which confers structure to thedfegacet'. For exam-
ple, the lexicon learning experiment (8 3.6) uses features (refer to 3a&d)lethat are obeying certain
constraints, the most obvious being that featEiy¢Boolean feature that is true if the word consists
only of capital letters) logically implie$» (Boolean feature that is true if the word contains capital
letters). There are, without a doubt, more subtle interdependencies tandiinstructure in the
features in Table 3.3, for example there is a strong correlation betieand F;, the latter being
a suffix of the former. Part of the value of the two-pass classifier ds&cliwas that it could learn a
similarity measure and ultimately a classification function without requiring hesatyfe selection
or preprocessing. Ultimately, however, the learner wastructurecdbecause it ignored structural in-
formation of the input or output space. Exploiting such information coulddvartageous because
structural constraints reduce the size of the search space, allowistgadad more focused learn-
ing. Also, many learning problems do not even fit the classic mold of findingpetion that maps
real-valued vectors to categorical labels. The field of learning with stredttinputs and outputs
has received increasing attention in recent years, and is the subjbig dhapter within the context

of graph-based semi-supervised learning. Our contribution in this aghapteextend graph-based

60

learning to learning tasks with structured inputs and outputs, and to applggbking theoretical

framework to a machine translation task.
4.1 Structured Inputs and Outputs

Traditionally, the input sef’ of a learning problem is modeled as a vector space of real-valued or
categorical features, and the output ¥eis modeled as a discrete, finite set of categorical labels.
However, in many problems either or both &fand) may be structured spaces that may or may
not be finite. The structure could concern not oAlyand), but also a relationship between them.

Examples include:

 Spatial structure:ln many image processing applications—such as image segmentation—the
input is an entire image in raster format, and the “labels” are sets of redipnsts denoting,

for example, objects of interest within the image.

» Sequential/temporal structurén a natural language tagging application, the input consists of
a sequence of words and the output is a sequence of tags, oneHawaac The ordering of
elements in both input and output is important. Defining sequencing on inpotitgut may

be very different, as in e.g. an optical character recognition application.

 Hierarchical structure:Natural language parsers produce syntactic trees as their output.

» Combinatorial structure:Machine translation applications often usignments—bipartite
graphs that show the correspondence of each word or phrase iouitve $anguage to a word

or phrase in the target language.

The classification above is not exhaustive because arbitrary kindeuofugal constraints may
be added to inputs, outputs, or their combination.

The machine learning approaches that we have discussed until now hudstinate of the
conditional probabilityp(y|x), usually in form of a probability distribution over the discrete labels
{1,...,¢}. A natural extension of this approach to structured data is to analyticallyed&fy|x)

as a parameterized function that obeys by definition the structural constod X’ and). Then,

61

parameter estimation by using e.g. gradient-based or maximum-margin techedqoagplishes the
learning task. This approach has been successfully used in maximum-iiandiovy models [215],
kernel conditional random fields [131], hidden Markov supporteemachines [6], and support
vector machines for structured output spaces [218].

Another possibility is to forego analytic definition fpfy|x) and instead focus on regressing a
real-valuedscoringfunctions. Such a scoring function accepts a pair of input and output data and

computes a real-valued score:
s: X xY—->RU{-0} (4.1)

The scoring function encapsulates all structural constraints and yie¢#s laumbers for better
matched pairs of inputs and outputs; the nature of the scoring function i& thiatays fulfills
whatever structural constraints must be satisfiecktandy. Training data pairs are considered
highly feasible so they are assigned high values. d@onversely, infeasible, unlikely, or unwanted
pairs are assigned low valuesofFor completeness, if a paif(x, y)) does not satisfy the structural
constraintss(x, y) £ —oo. Given this setup, estimated structured labels are obtained by solving:

y = argmax s(x,y) 4.2)
yey

Often it is possible that not all pairs ii x) are feasible. Some applications denote

V() ={y €V |s(xy) # —oo} (4.3)

which eliminates a priori unfeasible combinations from the search spacéjch sase the learning
problem can be reformulated as
y = argmax s(x,y) (4.4)
yeV(x)
The definition ofs and the method of estimating theg max function are application-specific.
The functions is unable to emit estimated labeldirectly; instead, it learns an estimate of how
good a given feature/label pair is. Therefore, using a scoring metinatréictured learning requires

the existence of Aypothesis generator function

xX: X —FQ) (4.5)

62

whereZ () is the finite power set of the (potentially infinite) 9t

FY)={AecP(Y)| card(A) < oo} (4.6)

The disadvantage of a score-based formulation of structured learnihgtithe method is not
complete in that it must work in tandem with a hypothesis generator, whicls fissawvn learning
problems. The advantage of the approach is that it allows using unstrdatail-valued function
regression algorithms with structured data. Such a learning problem issifitghe and may scale
well to large problems. In contrast, an approach that n¥ge) directly is often complex and
difficult to scale.

That the codomain of consists of finite sets is an important detail from both a theoretical
and a practical perspective. Theoretically, a finite codomaiy wiakes it possible to define finite
similarity graphs and therefore apply graph-based learning. Practicadlycing the search space
for y increases the speed of search considerably regardless of the me#thd The hypothesis
generatory is usually a generative learning system that is fast and has good radalicks in

precision (has false positives).

4.2 Graph-Based Semi-Supervised Formulation

As we have shown in Chapter 2, label propagation is capable of learm@datimonic function over
a graph starting from a few vertices where the value of the function igremmsd (the training, la-
beled vertices). Until now the learned function modeled probability valuesigixely. Assembling
several probability values in normalized vectors modeled probability distritmitwer sets of mu-
tually exclusive labels. The scoring-based approach to structuradrigagrovides an opportunity
to apply graph-based methods to structured learning problems by riegréss scoring function
directly instead of computing probabilities. To build a graph, we need to dafimailarity function

between input-output pairs:

o (A XxY)x (X xY)— Ry (4.7)

Alternatively, we could define a distance function with the same domain amh@id, and then

apply the Gaussian kernel to it for obtaining similarities, as we did in Chaptéh8osing between

63

similarity and distance depends on the natur& @nd)’; for the applications we discuss below, the
most natural approach is to define a similarity directly.

Giveno, a similarity graph containing the training data and the test hypotheses fogragam-
ple can be constructed. Each vertex represents either a pair of inpaiugna values((x;, y;)
obtained from the training set, or a test hypotheis, (x (x;)),;)) - Instead of the continuous prob-
ability distributions associated with labels, this time there will be only one continteais/alued
“label” associated with each vertex, the scoring functioifhe scores will be learned by the appli-
cation of a graph-based semi-supervised learning method such asrighegation.

To understand how label propagation works for regressing a funatmmsider again the cost
function, a.k.a. smoothness (Eq. 2.23), that the label propagation atgarithimizes:

S= > wy(fa— 1) (4.8)
R
ke{l,....0}

under the constraint (recall thét; (n) is a Kronecker delta vector of lengf¥i valued at 1 in posi-

tionn and O elsewhere):

In our case there is only one label to compute (the score itself)=sol, the weightsi;; are
values of the similarity functiow ((x;,y:)) , (x;,y;)), the é,(y;) vectors become the training
scoress(x;,y;) Vi € {1,...,t}, and thef matrix (in our case degenerating to a column vector)

contains values of thefunction, resulting after substitution in:

2
S= > ollxiyids (xy)) (s(xinyi) — s(xj.55) (4.10)
i7j€{17-~~7t+u}
P>tV ji>t

The constraint is now implicit in the immutability of train scores; the constrainednmaédiate
matrix £ has disappeared entirely.

Similar to the probability case§ is a proper loss to minimize because it penalizes inconsis-
tent score assignments—those that score highly similar regions with abuapyiyig score values.
Score values diffuse from labeled vertices and follow the high- and lemsitly regions on the man-

ifold built by o. We can now formalize structured graph-based learning as follows.

64

Definition 4.2.1 (Graph-Based Formulation of Structured Learning for RegressiGonsider a
structured learning problem defined by featuxes= ((x1,...,x¢) C X*™, training labels
Y = {yi1,...,y:)) C V¥, corresponding training scorgésy, ..., ss) € R, similarity function
o: (X x)Y)x (X x)Y)— [0,1], and hypothesis generator functign X — F()). We define
the similarity graph for the structured learning problem as an undirectedteeigraph with real-

valued vertex labels, constructed as follows:

* add one vertex; for each training pair sampléx;,y;)) Vi € {1,...,t}, labeled with the

scores; (training pair samples have predefined scores);

+ add one vertex;; (with unknown score, initially set to 0) for each pair consisting of a test sam-

plex; and a hypothesigy(x;)),;, wherei € {t+1,...,t+u}andj € {1,...,card(x(x;))};

for each test vertey;; and each training vertey,, define one edge with the weight

wijke = o ((%, (x(x0));)) » (%> Y8)) (4.11)

for each pair of test verticas; andvy;, define an edge linking them with weight

wijkl = o ((%, (x(xi));) > (s Oc(=0))1)) (4.12)

The structural constraints éf x)) have not disappeared—they are now folded into the definition
of o, which bridges the structure of the input space with the unstructuredssign framework.

Devising good definitions aof is the concern of the following sections.

4.2.1 Learning With Only Positive Examples

The similarity graph for structured learning as per Definition 4.2.1 needs #neiny scores
{(s1,...,8¢) € R*. Certain problems naturally present the learning system with such scores.
For example, in a sentiment categorization application [178] such as a muige/ Igy/stem, train-
ing data may consist of a set of sentences accompanied by an integed-vating from 0 (very

unfavorable) to 3 (very favorable). Test data consists of texts withnwgxplicit rating. Such a

65

setup allows using graph-based learning to regress a real-valuadgsftorction that is a contin-
uous extension of the integral training scores. After regression,destscan be kept as such or
discretized, by rounding, back to the same integer values as in trainingapplisation has been
demonstrated by Goldberg and Zhu [93].

In other learning problems, the train set contains examples and couatepkss, i.e. “good”
training pairs ((x, y)) + and “bad” training pairg(x, y)) —. In such situations, a common approach is
to assign each positive training sample a constant high sggrand each negative training sample
a constant low score_. Then regression learns a real-valued function with ragges;]. A
given test sample will be “pulled” towards the positive or negative vertisadictated by the graph
structure. The actual constants ands dictate the highest and lowest score received by any test
sample—in label propagation, all learned scores will fall in between these limitise maximum
principle of harmonic functions [1]. Aside from the obvious requirement< s, there are no
other restrictions with regard to choosing these values; we are only irgeiagheir ordering. Some
applications define limits such asl and1 or 0 and1. In keeping with our previous application
when the computed scores had probability semantics, we chaose 0 ands, = 1 throughout
this chapter.

Many structured learning problems, however, only define a trainingosgaining only positive
examples, that is, correct paif&;,y;)) Vi € {1,...,t}. Moreover, all training pairs arequally
realizable, desirable, or “good” (there is no confidence informationces®d with the training
data). It would appear that only a little change in setup is needed: assipigthecore £, = 1)
to all training samples and leave no sample with seare= 0. This nave setup is, however, ill-
advised: In the absence of negative samples with low scores, labelgatgn will promptly learn
the scoring function that minimizes down to zero—the constant function valued ait all points.
The traditional setup of label propagation that we described in § 2.3.2 didave this problem
because the system predicted probability distributions over multiple and mutxellse labels;

a training sample carrying one label was automatically a negative sample édhedllabels.

Automatic generation of negative samples is an option for certain problemsnieuthat
should be approached carefully because not all negative samplesedtg, particularly in high-
dimensional spaces. Consider a structured problem wkiexe) is such a large space. Then, by

necessity, the actual train data and test hypotheses points will only fill a goraén of that space.

66

(If the learning problem is formulated properly for graph-based legtrtire training data and the
correct hypotheses will form a lower-dimensional manifold in that spa@erjerating random hy-
potheses would simply place random points in that sparsely populated spsitategy that falls
prey to the curse of dimensionality: those random points will be equally déan finy correct hy-
potheses and incorrect ones, and as such will be uninformative. dd‘gegative” example must
be dissimilar with all positive training pairs (which is easy to accomplish) butsatagar with the
incorrect or inferior pairs predicted by the hypothesis generat@uch a generator would need to
follow the characteristic of the hypothesis generator and its proneneskiogsgstematic errors,
a requirement that is difficult to fulfill.

We will use a different approach that avoids the necessity of genensigative samples. The
idea is toinfer negative samples by exploiting information provided by the similarity functiolror
each training samplgx;, y:)) , ¢ € {1,...,t}, we construct not only one vertex, as prescribed
by standard graph construction (“the positive vertex”), but also omi& €negative” vertexv; .
The score assigned 6. is alwayss; = 1, whereas the score assignedo is alwayss_ = 0.
“Positive” and “negative” for vertices refers to them representingjtp@ (realizable) vs. negative
(unrealizable) training samples, not a mathematical sign. In fact, givechoice of scores, = 1
ands_ = 0, a more evocative nomenclature would be “positive” and “ground,” jestifly the
electric circuit analogy [68] that we discuss further in § 4.4.5. Havingtaanted the extra training
verticesv;_, we must connect them to the rest of the graph. To do so, we computenediges
from the edge weights linking each sample to the vertices. First we require that the similarity

functiono is bounded to the finite closed range , s]:
o (XA XY)x (X xY)—[s_,s4] (4.13)

We assume that wheneverevaluates ta_ that means the involved samples are entirely dis-
similar, and whenever evaluates ta_ that means the samples are entirely similar (or better put,
equivalent for the purposes of comparing for similarity). Then we relyhensimple observation
that, under these assumptions, a test faiy, y;)), 7 € {t+1,...,t + u}, thatis similar to a train-
ing pair (x;,y:)),% € {1,...,t}, with similarity values;;, can also be considered dissimilar to the
same training pair to the extesft £ 1—s;;. Putanother way, the test pa(k;, y;)) can be consid-

eredsimilar to the extentl — s;; with an imaginary negative sample that complements the training

67

point ((x;,y:)) . So the positive samples plus the bounded similarity value provide enough info
mation for graph-based learning if we add one synthetic negative traiamgle for each positive
training sample and amend the similarity function appropriately.

We will formalize these considerations in the definition below.

Definition 4.2.2 (Graph-Based Formulation of Structured Learning with Only Positive Thgin
Samples) Consider a structured learning problem defined by featdres ((xi,...,xt4u) C
X training labelsy = ((y1,...,y:) C V*, similarity functiono : (X x V) x (X xY) — [0, 1],
and hypothesis generator functign: X — F()’). A similarity graph for the structured learning

problem is an undirected weighted graph with real-valued vertex labelistraated as follows:

add one labeled vertex_. for each training pair sampléx;,y;) Vi € {1,...,t}, with the

label equal to 1;

+ add one labeled vertex_ for each training pair sampléx;,y;) Vi € {1,...,t}, with the

label equal to O;

+ add one test vertex;; for each test sample consisting of a paipand a hypothesisx(xl-))j,

wherei € {t +1,...,t +u}andj € {1,...,card (x(x:))};

« for each test vertexv;; and each training verticesv,, and v, if
o({{xi, (x(xi));)) » (xk,¥x))) > 0, define one edge linking;; to v, and one link-

ing v;; to vy, with the respective weights

wijkt = o ({(xi, (X(xi) ;) » (%6, &)) (4.14)

Wijk— = 1 — Wijry (4.15)

« for each pair of test verticag; andvy,, if v;; # vy, define an edge linking them with weight
wijkt = o ({xi, (X(x:)) ;) (e, (x(x0))0)) (4.16)

The resulting graph has paths passing from the training source vertitesit@orresponding

sink vertices through test vertices. The semi-supervised effect ight@out by the additional

68

connections between test vertices. In practice, the graph (which mightryedense) may be
approximated by only keeping its strongest edges.

One decision that needs close scrutiny is the choice of a linear functigdhdaveight assign-
mentsw;;,— = 1 —w;;,+. The basic requirement is just a monotonically decreasing function defined
on [0, 1] and with a range ir0, 1]. Many monotonically decreasing functions could be chosen to
map the rangé0, 1] onto itself, and the choice of a linear function must be justified appropriately.
We show below that the choice is well grounded because, save for riiesgpervised effect, it
computess assignments consistent with the overall similarity with the training set, as provked in
theorem below. The theorem ignores for now any semi-supervisext éfiduced by edges linking
different hypotheses) and applies to the supervised subproblemticedeawe show that choosing
the linear function in Eq. 4.15 leads to a sensible result: the score assiglinangiven sample
is, in fact, the averaged similarity between that sample and the training sampleghigthit bears

similarity.

Theorem 4.2.3. Consider a similarity graph for structured learning defined for featuxes=
{(x1,...,%X¢4u) , POSitive training labelsy = ((y1,...,ys)), similarity functiono : (X x)) x
(X xY) — [0,1], and hypothesis generator functign: X — F(J)). Then, if all unlabeled-

unlabeled edges are zero, label propagation will yield as solution theescor

t

Do (e, (), s (i i) (4.17)

Lyt

1

s((=i, (X(x1));))) =

whereC;; is the count of labeled verticésfor whicho ({(x;, (x(x:)),) » {xk, y&))) > 0.

Proof. We have shown that the harmonic function over the graph is unique antbavkraow that
label propagation computes the harmonic function, so all we need to shoat iéhvalue in the
hypothesis satisfies the harmonic property. A given verfekasC;; edges to source vertices,

Vk € {1,...,Cy;}, and anothe€;; edges to sink vertices ;4 V&' € {1,...,C;;}. The weighted

average of these two connections is
D wigkrs(vey) + Y wigns(vg)
k=1

A k=1
g Wijk+ + E Wijh—
k=1 k=1

(4.18)

aij

69

wherew; ;. andw;;;,_ are the weights of the edges linking vertgx to verticesv; .+ andw; i,
respectively. In our case the scord®y.) are all zero so they nullify the second sum in the de-
nominator. Also, from the definitions; ;. + w;;x— = 1 so the denominator sums up@g;, so we

obtain

1 t
i = 7 > wijys(vey) (4.19)
Y k=1

which is exactly the harmonic condition. S®atisfies the harmonic property and, being unique, is

the function computed by label propagation. O

This result shows that choosing the linear relatign_— = 1 — w; ;. in Definition 4.2.2 leads
to score assignments that (ignoring semi-supervised effect inducenddyeled-unlabeled connec-
tions) are equal to the average similarity of each that hypothesis with the gaamples it is
similar to. Convergence to the trivial solution & 1 for all samples) has been avoided, and the
scoring obtained is consistent with our notion of similarity: hypotheses tleainare similar to
some samples in the training set will receive higher scores.

The presence of unlabeled-to-unlabeled connections may improveg@lity under the mani-
fold assumptions discussed in Chapter 2: graph-based learningemnfatonly consistency of the
score across training and test data, but also across the test samples.

The resulting graph has a large number of vertices, two for each traimmpgle and one for each
hypothesis. Even if nearest-neighbor techniques are used for limitingotivectivity, scalability
might become an issue. We introduce in 8§ 5.5 a means to reduce the numbegroesvey orders

of magnitude without affecting the result of the learning process.
4.3 Similarity Functions for Structured Inputs and Outputs

In the formulation given above, the performance of the approach hargésfining a good similarity
functiono. A good similarity function should properly handle the structured naturemftghand
outputs, ultimately making for an expressive, smooth similarity.

Defining similarity across structured spaces is a recurring problem teanbay applications
beyond graph-based learning. This section provides a brief oveonfiewch similarity functions.

Many of the recently-studied similarity functions aternel functions—functions that can be ex-

70

pressed as a dot product between two vectors associated with the impuightta mapping func-
tions. Section 4.3.1.3 introduces formal definitions for kernel functions.gfaph-based learning
it is not necessary that the similarity function is a kernel function (the orjuirements are pos-
itive and symmetric), but kernel functions have many desirable propenigably an expressive

representation and efficient evaluation.

Sequence Kernels Sequence kernels are a direct generalization of the traditional fixgthléa-
ture vectors. Instead of defining one sample as one vectoR", sequence kernels define a sample

as a variable-length catenation of such vectors, i.e.

x = (x,x® _ x®)y (4.20)

D eR” Vie{l,... k} (4.21)

wheren € N* is a constant but € N is a sample-dependent variable.

Sequence kernels have found natural applicability to systems usinchsgpeewputs, for speech
is a variable-length signal consisting of real-valued vectors (e.g. tretreépoefficients [66, Ch. 6]).
Campbell et al. [39] defined a sequence kernel suitable for trainingppddiMector Machine along
with an efficient mean-squared error training criterion method. They apipleesequence kernel to
speaker recognition and language recognition tasks. Solomonoff 208].Jised a similar setup to
prevent loss of performance of a speaker recognition system in therpre of variations of handset

and channel characteristics.

String Kernels String kernels are similarity functions defined over variable-length catersatid
symbols extracted from a finite alphabet. There is some amount of confusit@rature about
string kernels vssequencé&ernels, terms that are often used interchangeably. We consistently refe
to sequence kernels as kernels over variable-length catenationstofsvetreal numbers, and to
string kernels as kernels over variable-length catenations of symbas®difrom dinite alphabet.

A simple example of a string kernel would be a 0/1 similarity that compares forogsaphic
equality, but such a function would be too non-smooth to have any intergstipgrties. Edit dis-
tance gives a better notion of similarity than the 0/1 similarity, as do many otheexemt-match

measures. Naturally, string kernels are of particular interest to Humagulage Technology appli-

71

cations because strings model human language text directly. Section §idctises string kernels
in detail, as they will be used in our application of Graph-Based Learnindatistical Machine

Translation.

Convolution Kernels Haussler [102] established a formalism for defining kernels over stedttu
data having countable sets as support, including strings, trees, art gidigs work was predated
by research on string kernels, which he generalized into a framewarlapfdicable to trees and
graphs. A convolution kernel defines a kernel over a structure in tefkesnel evaluations on parts

of that structure.

Tree Kernels Tree kernels are similarity measures between trees and are also of itddxiedt
ural Language Processing because of their applicability to syntax tf@éekins and Duffy [51]
describe tree kernels with NLP applications under the framework of ¢atimo kernels and show
applications to parse trees. Culotta and Sorensen [60] applied tredskirerelation extraction
task. Vishwanathan and Smola [223] take the route of transforming therteestrings by using a

non-ambiguous mapping, followed by use of regular string kernels fercwenparison.

Graph Kernels Given that strings are restricted trees and trees are restricted geaphgjral

further generalization of structured kernels is defining similarities overtgra(Graph kernels are
not directly related to Graph-Based Learning.) Due to the formidable ssipeepower of graphs,
graph kernels are the most difficult to define. In 2003, Gartner et&jl.n&ve shown that any sim-
ilarity function on graphs that can fully recognize graph structure is Aife-and also have shown
that approximate matches are computable in polynomial time. One similarity criteriasésl lon

the lengths of all walks between two vertices, and the other is based onrfi®nof occurrences
of given label sequences in labeled graphs (the more label sequarccésbeled graphs have in
common, the more similar they are deemed). Kashima and Inokuchi [115kd&fiapproximate
kernel by means of random walks of finite lengths and subsequently &pplclassification of

chemical compounds [116]. Cortes et al. [53] introduced rationalgtermwhich operate efficiently
on weighted transducers. Graph kernels are of interest to a hostroaiuanguage Technology

applications because graphs occur naturally in many input and outpesespations: many NLP

72

tools produce syntactic and semantic information (such as named entitieaddapsg structures,
anaphora, discourse relations) that can be most gainfully exploited #yph dramework [212]; fi-
nite state transducers are used in several HLT areas [165]; and tdeowphrase alignments used

by today’s SMT systems form a bipartite graph.

Choosing a Kernel for Statistical Machine Translation We propose below an application of
structured Graph-Based Learning to Statistical Machine Translationthisokind of application,
the inputs and outputs are sentences, which are highly structured entite#her string, tree, or
graph kernels could be investigated as candidates.f@f these, we chose string kernels because
they are the simplest to operate with, most scalable, and most directly relatednmsh common
automatic evaluation criterion for Statistical Machine Translation (SMT) (asudged in 4.4.7).
Before describing our proposed application of graph-based learmi8¥IT, we will discuss string

kernels (our similarity measure of choice) in detail.

4.3.1 Kernel Methods

String kernels are an instance of kernel functions, an important con€emdern machine learn-
ing. This section introduces the appropriate background. Kernel mefi6&] form a category
of machine learning methods that has received increasing attention in thgepes. This section
reviews the main ideas behind kernel methods and builds backgrounssaegcéo introduce string
kernels, which in turn are the basis of our similarity measure.

Positive definite kernels are motivated by the need to apply linear methods tanendedun-
ing problems that can be best tackled by nonlinear systems. The keswal-beethod essentially
consists of mapping the input space to a different space, called the mapaeel or thdeature
space Afterwards, the linear machine learning method is used in that space. §liba learned
function (e.g. a classification boundary) is linear, the transform is narlise the relationship be-
tween the learned function and input space is nonlinear as well, leadimgxdmple, to a curved
decision boundary obtained through a linear classification algorithm. Theintafunction must
have properties that make it a good choice for the input space and isdapipe® to introduce
problem-specific knowledge into the learning process. Also, efficientilega must be possible,

which restricts both the mapping and the learning method in ways we will dedmibe. We first

73

define a kernel function formally.

Definition 4.3.1. Consider a function: : X x X — R. If there exists a Hilbert spack and a

function® : X — H such that
k(x,x') = (®(x), ®(x)) Vx,x' € X (4.22)

then we callk a kernel function® a feature mapof x, and’H the feature spacessociated with:

and®.

Choosing the right kernel for a given problem is an active area @farel. Using a kernel

function x becomes advantageous under the following circumstances:

d
» The original linear machine learning method defines a dot prodyet) = » ~ (3], onR*
=1
and uses the dot product exclusively in calculations;

» The mapped spacH is arguably a feature representation that is better amenable to linear

methods (e.g., hyperplane separation) than the original space

For example, the mapping : R? — R?, ®((z1,22)) = (@2, V2z122, 22)) allows a plane
in three dimensions to separate points that would be separated by an ellipsessandimal bi-
dimensional space. Furthermore, the dot product in the mapped spacwpig the square of the
dot product in the initial space, as can be readily shown through simpleralgenanipulation. This
means that a method that learns a separating hyperplane (e.g. a SuggortMachine [32]) can
be used for planar radial separation at virtually no added computatiosglic spite of it working
in a higher-dimensional “intermediate” space.

To show that a given functior is a kernel, it is necessary to defift¢ and & analytically
and show that the fundamental relationship in Eq. 4.22 holds. That mighttisoesebe difficult,
so the question arose of finding out whether a functias a kernel by verifying properties of
directly. The functions that are equivalent to dot products in mappeckspare calleghositive
definite functionswhich we define below. The proof of equivalence between kermaitions and

positive definite functions can be found in literature [103, 159, 59].

74

Definition 4.3.2. A real symmetric matrix\/ € R™*" satisfyinchichij > 0 Vk ¢
7"7‘j
N*, {(c1,...,c) € R¥ is calledpositive definite A function : X x X — R for which the

matrix K;; £ x(x;,x;) (called the Gram matrix) is positive definite: € N*, (xy,...,x,)) € X"

is called apositive definitdunction.

Substituting positive definite functions for dot products in machine learnigyithms auto-
matically introduces mapped spaces and uses them in learning. Also, atskesnally come in
simple analytic form, they provide much faster evaluation than actually computireg products
in the mapped space directly. In fact the mapped space might be infinite-dimainsDue to its
remarkable effect of mapping the original features into a much more estpedeature space at a
low cost, said substitution is called “the kernel trick” in the machine learning camiyu

The connection of kernel methods with graph-based learning becorpeseapif we observe

that the usual similarity function defining the graph in Eq. 2.1

Wij = exp [—d(xaf)z] (4.23)
is, in fact, a kernel function [103].

Of patrticular interest to kernel methods are teproducing kernel Hilbert spacd62, 72], for
which the mapped space has the fokinr= X — R and is associated with a continuous kerrel

The corresponding inner product is:

(3(x), 3(x')) = /X B, (%), (x')dy (4.24)
if X is continuous, and
(@(x), B(x)) = Y @y (x)®y(x) (4.25)
yeX

if X is discrete (whether finite or not). Our next sections are concerned wfithirty reproducing
kernel Hilbert spaces over discrete spaces only with the kernel vefireed as per Eq. 4.25.
4.3.1.1 Normalized Kernels

For any kernel function, the inner product space defined by the mgdpia complete under the

following norm definition [171, 187]:

()] = V(2(x), 2(x)) = V/r(x, %) (4.26)

75

It is easy to verify that the properties of the norm are satisfied followingdéfaition of a
positive definite function, so any Hilbert space is also a Banach spacenerith||®||. (However
not all Banach spaces can define a corresponding dot product.)

By the Cauchy-Schwartz inequality [171], we have:

[(@(x), 2(x))| < [|@(x)] - [| ()] (4.27)

|6(x, %) | < VE(x, x)r(x, %) (4.28)

which implies that the normalized kernel is bound withinl, 1] (or [0, 1] if all kernel values are
nonnegative, as is often the case). To introduce normalization, we nekdine a distinguished

subset oft” as follows.

Definition 4.3.3. Given a kernel functiork defined on seft, we define thenonsingular kernel

subsetdenotedY”*, as:
X2 X\ {x € X|k(x,x) =0} (4.29)

For any kernelx(x,x) = 0 = x = 0, but we definedY"* as depending or(x,x) = 0 as
opposed tx = 0 because there are kernels that do not evaluate to 0 even in the origimhifdr

consequentiyt’ = X").

Definition 4.3.4. We define thenormalized feature mag:

B(x): A S RY d(x) = II$8H (4.30)

The function is well defined because the denominator is never O; in factasisto verify that

|0(x)]| =1 Vxe X~ (4.31)

The functional® is a feature map of theormalized kernek : X** x X** — R.

s - P(x) @)
R(x,x') = <‘I)(X>7‘I>(X)> = <||(1>(X)”’ |]<I>(x’)||>

_ k(x, %)
\/H(X, x) - k(x/, ')

Normalized kernels are important to the study of kernel methods becayseftee eliminate

(4.32)

(B (x), ©(x))
@) - @)

(4.33)

the dependency of kernel's value on inconsequential characteri$tibe mputs, such as size or

76

sparseness, and also allow for easier combination with other similarity mea¥uitbout normal-
ization, kernel evaluation would yield values that only give a relative natfosimilarity. Also, a
normalized kernel engenders a distance with metric propertiestitVeras we will show in the next

section.

4.3.1.2 Relationship with Distance

Given a kernel functior defined on a discrete s&twith the mappingp with values in a reproduc-

ing kernel Hilbert space, consider computing the Euclidean distance éetwe points in mapped

space:
de (x,%) = [(Du(x) — Pu(x))? (4.34)
weX
= D 0u®)?2 -2 Pu(x)Pu(x) + Y Dy(x)? (4.35)
weX weX weX
= VK(x,x) — 2k(x, %) + Kk(x/, %) (4.36)

Following a similar expansion, the normalized distance computes as follows:

~

dy (x,%) = Vi(x,%) — 2&(x, %) + A(x/,x') (4.37)

By the definition ofk, 4 (x,x) = #(x',x’) = 1, so

di (x,%') = /2 — 2k(x, %) (4.38)

As Euclidean distances,. andd,. readily satisfy the metric properties (§ 3.4) directly from
their definition. This is of high practical interest because many algorithnfagbnearest neighbors
searching require at least a subset of the metric properties. For exdheplal-tree data structure
that we use in Chapter 5 for accelerating nearest neighbor computatiras properties that
Euclidean distance fulfills.

However, finding the closest neighbors according.tdoes not necessarily find the most similar
items:d,(x,%’) < dy(x,%") that does not necessarily imptyx, x') > x(x,x"), i.e., kernel values
are not in a monotonic relationship with the corresponding distances. Heteeig normalization
comes into play powerfully. We prove a simple theorem below that is of impatempractical

approaches.

77

Theorem 4.3.5.Consider a kernelx,) and pointsz, x', x” € X**. If d,.(x,x') < d,(x,x"), then
k(x,x') > i(x,x").

Proof. We take the difference of squarés(x, x”)? — d..(x,x')? applying their simplified form in

Eq. 4.38:
de(x,x")? — de(x,%¥)? = 2(A(x, %) — &(x,x")) (4.39)

d, is a metric sal,(x) > 0 Vx € X**. Consequentiyl,.(x,x") > d.(x, %) < du(x,x")% >

d..(x,x")%, which immediately leads to the conclusidfx, x') — & (x,x") > 0. O

Practically, Theorem 4.3.5 shows that using a nearest-neighborsdamréo the normalized
distanced,. will find the most similar samples in a data set if it takes the precaution of eliminating
points for whichx(x,x) = 0 (if any) from the potential candidates in the search. This is achieved

easily in practice with negligible computational cost.

4.3.1.3 String Kernels

At the highest level, string kernels are simply kernel functions definetl en>* for some discrete
vocabularyX. Use of mappings and similarity measures definedérand akin to kernels was
already widespread with strings prior to the introduction of kernel methealsexample, consider

the following map:
:Y* - R® By,(s) = card {v,0 € ¥* | s = vun'} (4.40)

We use the notatioiR* as a shortcut fofX — R), i.e., the set of functions defined ai
with values inR. Also, we use the notatio®,,(s) as a shortcut for the longer, more explicit
notation[®(s)] (w), which reveals thab is a functional applied te yielding a function thatin turnis
applied tow. The shortcut notations are a generalization of the usual notations in multslonah
Euclidean space®R(* andz,, respectively).

Eq. 4.40 defines a mapping that describes strings solely through the theydsontain, without
regard to their order, modeling technique known as the “bag-of-wardxiel (or, depending on
the vocabulary used, “bag-of-characters”) s s large (e.g., an entire document), word frequency

has been shown to be a good predictor for the topic covered if the woedgeanmed and if stop

78

words (e.g., “and”, “not”) are eliminated [142, 109]. Taking the innerdurct in the corresponding

normalized mapped space yields:

050, 0(0) D Dy (5)Pu(?)
NN s), B wes)
(860 80)) =)T o7 - (4.41)
<Z (I)w(s)2> (Z (I)w(t)2>
wWEX wWEXD

which is nothing butcosine similarity the popular similarity measure used in Information Re-
trieval [155] and NLP [200]. Joachims has first used the kernelgtigs of cosine similarity
in a document categorization task using a Support Vector Machine ass#ielgd09]. It is worth
noting that in this case the kernel trick is not of use because the feaare spexplicit and the ker-
nel is computed directly as an inner product in feature space. The irogugi can be completed in
O (|%|) time if preprocessing extracts sorted feature vectors, computable in tdh|i - log |s|)

time for each input string.

The p-Spectrum Kernel (n-gram kernel) Leslie et al. [139] introduced, in the context of a pro-
tein classification task, a direct generalization of the bag-of-wordsekéinat maps a string into
the space of all possible strings of length exagtlyThe kernel is also called thegram kernel in
the NLP literature [92], for obvious reasons. The feature of a stiagcoordinata: € X? is the

number of occurrences afin s.
®: 0" - R ®,(s) =card {v,v' € £* | s = vwv'} (4.42)

This definition is very similar to the bag-of-words kernel in Eq. 4.40, with 8seatial difference
that in this casev is a fixed-length string of length, whereas in Eq. 4.40 it is a single elemenibf

The inner product is computed in the expected manner:

K(s,t) = Y Buy(s)Pu(t) (4.43)

wexp

In this case the kernel trick is highly useful for computing the inner procas enumerating
all p-length substrings and matching them would take time exponential iBetter approaches
have been proposed that rely on preprocessing the strings into infeersatiictures in linear time.

Leslie et al. [139] built a trie data structure [26] out of one of the string$ &hieved an overall

79

time complexity ofO (p (|s| + |t|)). Using a generalized suffix tree [189, 223] reduces complexity
to O (|s| + [t])-

The Mismatch Kernel Leslie et al. also introduced the mismatch kernel [140], which is similar
to thep-spectrum kernel but makes the similarity measure smoother by allowing upastaat

m < p mismatches in the substrings of lengthThe mapping function is:
Py(s) = card {v,v' € B* | s=vw' Aju| =pAm >card{i € {1,...,p} | w; # u;}} (4.44)

The innercard function counts the mismatches between two strings of lengtiine outercard
therefore counts all possible substringg >* of s that are withinm mismatches from coordinate
stringw.

The implementation defines and uses a mismatch tree which is akin to a suffix Tied [&
overall complexity obtained wa® ((|s| + [t]) ™|%|™). Leslie and Kuang [138] subsequently in-
troduced two more variations on the mismatch kernel: the substitution kerneh witdels the
probability of replacing one symbol with another, and wildcard kernel, vhitows up tom in-
stances of a special wildcard character in the match. All of these modelsrigatased implemen-

tations and similar complexity profiles.

The n-Length Gap-Weighted String Kernel The mismatch kernel suggests further generaliza-
tion to kernels that support arbitrary insertions of extra symbols in eithibedtrings, which opens
the door togapped string kernejsa family of string kernels of particular interest to NLP at large
and to Statistical Machine Translation in particular. In order to describpaghgtring kernels, we

will first give a few additional definitions.

Definition 4.3.6. The strings[i : j|, 1 <14 < j < |s| is the substring,...s; of s. We say that is a
gapped subsequenocé s with indices vectod (denoted ag = s[i]) if 3i = ((i1,...,iu)) € N
with 1T <4y < ... < iy < [s| suchthat; = s;; Vj € {1,...,[t[}. The length of the gapped

subsequencewith indices vectoi is i, — i1 + 1. X" is the set of all sequences of length

(We observe the convention prevalent in recent literature to consistently aoptiguity when

discussing “substrings” and non-contiguity when discussing “sulesemgs.”) We now define a

80

mapping function that maps a string ¥i* onto the space of all of its gapped subsequences of
lengthn. The more “spread” a subsequence is (i.e., with more numerous and/argeigs), the
less representative it is of the string as a whole. This intuition is formalizedsing a penalty
factorA € (0, 1] that makes matches with longer gaps exponentially less important. The base of th
exponentiation is\ and the exponent used is the total length of the gapped subsequence.

For the finite se®2, n € N*, and\ € (0,1], we define then-length gap-weighted feature

mapping with penalty as the following functional:

Py - R (4.45)
Oy(s) = Aot (4.46)
iru=sli]

It is implied that®,,(s) = 0 if there is no vectoi such that: = sli], i.e., stringss andu have no

element in common. The corresponding kernel is defined as a regularadivict in mapped space:

K(s,t) & Dy(s)Dult) (4.47)

ueX”

It would appear that the rich, informative similarity notion given by gappetthes is also its
Achilles’ heel. Computing all terms directly and then summing them is impractical, gsatiee
combinatorially numerous. However, Lodhi et al. [149] defined a gagbeng similarity kernel
that requiresO(n - |s| - |t|) time and space to compute 1-gapped, 2-gappedy-gapped sim-
ilarities between two strings andt by using dynamic programming techniques. The cost is also
incremental—eact)(|s| - |¢|) iteration computes similarity for length and saves state for comput-
ing similarity for lengthm + 1. This is helpful because.-gapped similarity is a decreasing function
of m. An implementation might decide to stop computation early if the similarity has fallen below
a threshold.

Finally, Rousu and Shawe-Taylor proposed a sparse dynamic progrgnamimoach that re-

duces complexity t@(n - card(M) - log |t|), whereM = { ((i,5) € N? | s; = t,} is the set of

index pairs of matching string elements.

The All-Lengths Gap-Weighted String Kernel A number of alternative kernels related to the

above were proposed by Yin et al. [230] along with dynamic programmirayittigns. Of particular

81

interest is the all-lengths gapped kernel with the mapping function:

v - R (4.48)
B, (s) = Z \bfu—i1+1 (4.49)
iiu=s]i]

Note that in this case the codomain ®fhas changed fromx™ to X*, which means that the
mapped space is now the space of all strings. In spite of this space beisige@bly larger, the
dynamic programming algorithm only need¥]|s| - |¢|) time andO(min(|s|, |t|)) space. This,
together with having less parameters, makes the all-lengths kernel potentiaélyatiractive than

then-length kernel.

4.4 Structured Graph-Based Semi-Supervised Learning for Machin&ranslation

A field that has recently benefitted from steady progress in machine lgaainch equally steady
growth of corpora sizes is Statistical Machine Translation (SMT). Althocyitemporary SMT
systems have not achieved human-level translation capabilities on géedrathey have made
important inroads into tackling this difficult problem.

In the following we describe a practical application of our formulation opbrhased learning
with structured inputs and outputs: an algorithm to improve consistency irsgnased SMT.
As we have discussed theoretically, we define a joint similarity graph ovieingaand test data
and use an iterative label propagation procedure to regress a haathstoring function over the
graph. The resulting scores for unlabeled samples (translation hypsjtee then combined with
standard model scores in a log-linear translation model for the purpaseanking. We evaluate
our approach on two machine translation tasks and demonstrate absoluteaments of 2.6 BEU
points and 2.8% PER (without adaptation), and 11E8 points and 1.2% PER (with in-domain
adaptation data) over state-of-the-art baselines on evaluation data.

Machine translation is a hard problem with highly structured inputs, outputisedationships
between the two. Today’'s SMT systems are complex and comprise manysgmsythat use var-
ious learning strategies and fulfill certain specialized roles. Applying aleaming technique to
an SMT task is usually—and most effectively—carried by integrating thelaaming technique

within a multi-module SMT system and measuring the overall impact of that techniguunder-

82

stand the motivation behind applying structured graph-based learning To &dfscription of the

standard architecture of a state-of-the-art SMT system is in order.

4.4.1 Architecture of Contemporary Phrase-Based SMT Systems

Contemporary SMT systems follow a fairly standard architecture. ThegsisBow consists of
preprocessing, system training, decoding, and postprocessinge trathing stage, the model is
trained by using parallel sentences in the source and target langu@bessystem-wide model
consists of various models (such as a language model and a translation, mdueh) all feed an
overall log-linear probability model. Once the model is trained, a procdlxiaiecodingis used
to obtain estimated translation for test sentences. The decoder is a segirgh(esually having no
trained parameters) that searches for the translation that maximizes tadiptpof the translation
given the test input. Decoding may entail the generation and rescorimgpest lists, which is the
framework we will focus on.

The test phase usually operates at sentence level: one input sentese, isrocessed, trans-
lated, and “forgotten” as the next input sentence is read. This is thé st (although certain
departures do exist [219]).

In the following we briefly describe the main activities performed by a phbased SMT sys-

tem.

Preprocessing This is the activity performing all processing necessary for adaptinge=inn-
puts to tokenized data (words). Subsequent stages operate at thiet@teA system as simple as a
vocabulary-driven indexer that identifies words separated by wiaitesis a rough archetype of this
stage. However, preprocessors may become much more involved dependhe input languages
and on the task at hand. Scripts that have no explicit word separaticm gsuChinese) require a
learning machine procedure on its own for word segmentation [206, 2R1AB0, highly-inflected
languages (such as German, Arabic, or Greek) benefit from a momghimformed preprocessor
lest the vocabulary size increases and relationships between varieasianfs of the same word are
lost. Preprocessing also usually detects simple symbolic categories sushlzeras and dates [193].
Preprocessing is performed on both source and target sides for ithiagrdata (by different sub-

systems that take into account the specificities of the source and targeddpsy respectively) and

83

on the source side for test data.

Training Training the decoder is done with parallel texts in the source and targetdgag The
basic approach aims at computing parameters that maxptyze), which, after applying the Bayes

rule, becomes:

arg max p(y|x) = arg max p(x|y)p(y) (4.50)
y y

Of the two factorsp(y) is computed by using Eanguage modebn the target language side, a
problem that has been investigated extensively [50, 209, 105, 48]traislation modep(x|y) is
the more difficult subsystem to train; a variety of training methods are beieg, ssich as word-
alignment induced phrases [126, 175], syntactic phrases [126]plarade-alignment [126, 153].
Additional models may be used in the rescoring process, and the weights loigttinear model
associated with them are trained on the training set (parallel sentences soutee and target
languages), usually by using Minimum Error Rate training [172]. Eackysibm participating in

rescoring may be trained in a different way.

Decoding The decoding engine finds hypotheggs= (X(xi))j (candidate sentences in the target
languages) that are the best candidates for translating test sentendés slightly depart at this
point from the prevalent notations used in SMT literature for source agdttaentences @ndt)

in order to integrate the SMT process within the notations we have used inrleeagisection on
structured learning. In the same vein it is worth noting that the use of “hgp®hhere is consistent
with our definition of the term in § 4.1.

The decoder [125] essentially (a) segments each source (test) seinterhrases; (b) translates
each source phrase into a phrase in the target language; and @greetite obtained phrases to
obtain a translation. Each of these steps is subject to large variations gh@nasentence, several
segmentations into phrases are possible. Also, for each phrase in tice sanguage, several
translation phrases are possible. Finally, for a given target phrasawaerous reorderings are
possible. In order to reduce the number of hypotheses, severalrotusis estimate hypothesis
probabilities and prune out unlikely translations. The other models may inellmigguage model
and a distortion model that accounts for word reorderings. These nargalgtegrated within a log-

linear model (described below in § 4.4.3), which associates an overadl aaih each hypothesis.

84

The decoder could be used as is by simply taking the so-called 1-bekf kesthe hypothesis
with the largest score. A better option is to have the decoder outpuvtbest list which is a
collection of the hypotheses that have receivedhkargest scores. In many SMT applicatioNs
is on the order ofl03. N-best lists have the advantage of providing a good approximation of the

hypothesis set, while also keeping its size within manageable limits.

Rescoring Also known as reranking, rescoring operates on Afwbest lists output by the de-
coder. The hypothesis space has been reduced by the decodergss the point at which more
computationally-intensive models can be applied. The distinction betweenlidgcand ranking
stems therefore from practical necessity: mathematically, the models usedrgstimging stage
could have been applied against the larger hypothesis space selydhediecoder, but that would
have made the approach computationally infeasible.

The scores computed by the models in the rescoring stage are integratecawdtfier instance
of a log-linear model (8§ 4.4.3). The scores computed by the decodeitaiganodels are usually
integrated within this last log-linear model. The model is in principle the same amthesed
in the decoder, but is trained separately and possibly implemented followfiegedif engineering
tradeoffs (as it operates on a smaller input space but a larger numinexdels).

The rescoring stage is where sophisticated models may be inserted in th# system in a
scalable manner, and is the point at which we insert our graph-bag@tkenntegration is facile
because we defined structured learning to fit perfectly within a rescwangework. The formalism
for a hypothesis defined in § 4.1 corresponds to the notion of “hypothesian element of the

N-best list.

4.4.2 Phrase-Based Translation

The phrase-based approach to translation (as opposed to wod}-sae most important recent
development in SMT, and is ubiquitous in today’s systems. Phrase-basesthtion systems oper-
ate on phrases as the unit of translation. The translator divides sonmealtze text into phrases,
translates each phrase into a target language phrase, and then pessitdys the output phrases to
obtain the translated sentence. Phrases vary in length and a few gjaearagdvords may or may

not fall within the same phrase(s). The context horizon for phraseaeigtion is the sentence or

85

the chunk (a large constituent of a sentence). Phrase lengths mayadiftess source and target,

and include lengths 0 and 1.

There are several ways of dividing sentences in phrases and palriages in the source and tar-
get languages. Och et al. [176] learn phrase alignments from a paxaifels that has already been
word-aligned. The popular Giza++ Machine Translation system [17déigdes word alignments
that can be subsequently used for learning phrases. Koehn et@].dd@ a number of heuristics
to the process. Yamada and Knight [228] and Imamura [106] propdsedsing linguistically-
motivated phrases, i.e. the system should only consider phrases tlwtnast#uents. Such a re-
striction has low coverage and eliminates many useful phrases, so it oiotf@insr results when
compared to statistical-based phrase learners. However, using syaibggtiotivated phrases in
conjunction with statistically acquired phrases has good performancelsmdealuces decoding
time [100]. Finally, Marcu and Wong [153] proposed a model that leahmages jointly, direct

from an (unaligned) parallel corpus.

The system we use in our experiments is the University of Washington Madmanslation
System [120], which uses Och'’s algorithm [176] for learning phré&ses a word-aligned corpus.

The word alignments are obtained with Giza++.

4.4.3 Log-Linear Models

During decoding and rescoring, the prevalent means of aggregatiagabenodels into one meta-
model is log-linear modeling [20, 173]. Log-linear models (a.k.a. exporientdels) are based on
a powerful intuitive justification and an equally powerful mathematical justifica Intuitively, a
good model that needs to respect certain constraints (usually presetiiedorm of experimental
evidence) must not “overcommit,” i.e. it should assume no other constraitepiethose presented,;
aside from respecting the given constraints, it should assume that thbufistr of all data is as
uniform as possible. This translates directly to intently choosing the modebafmum entropy
from the universe of all constraint-abiding models. Mathematically, maximiziegctmditional
log-likelihood of the training data is equivalent to (i.e. is the convex duahifjmizing the entropy

subject to the given constraints [20].

86

A log-linear model receives as input sevefiedture functions;:
fi:XxY =R Vie{l,...|fl} (4.51)

that map possible input/output pairings to real numbers (or categoricalteutpBome features
may be defined only o or on)). A notable category of feature functions are binary features,
modeled as numbers i, 1} (which the paper introducing log-linear models [20] has used exclu-
sively). Although featureg; and the scoring functiomhave similar definitions, there is one notable
difference: whereas the value of the scefe, y) must increase with the feasibility/desirability of
the pair ((x,y)), there is no such requirement for a feature functfpn The only requirement is
that f;(x, y) correlates, or inversely correlates, with the feasibility(@f, y)) . Using these features,

the log-linear model computes the likelihood of a given pair as:

11
exp | Y Aifi(x,y)
pa(ylx) = AT (4.52)
> exp | YO Aifi(x,y)
yey i=1

where) € RV! is the vector containing the log-linear model’'s parameters, called featurétweig
or model scaling factors. The denominator ensures normalization fopanyedefined probability

and need not be computed if only the; max py (x, y) is of interest.

4.4.3.1 Training Log-Linear Models for SMT

For Statistical Machine Translation, the state-of-the-art method is Minimur Rate Training
(MERT) proposed by Och in 2003 [172] and subsequently improveddiy &d others [71, 150,
41]. MERT is a rather general training method that trains the parameters lwighinear model to
minimize a smoothed error count. The method is parameterizable by the trainimgpuorite SMT,
training maximizes directly Beu [180] or PER [173] against a development set. For example,

training for maximizing B EU solves the problem

A* = arg max BLEU(e); referencep (4.53)
A

where} is the candidate translation obtained by using model parameteiihe function is not

smooth and has many local minima, which makesathemax search difficult. MERT selects the

87

best candidate translation out of arbest list (candidate translation) by using coordinate ascent;

within an iteration the parameter that improves the score gets optimized while tmg atbdixed.

4.4.4 Constraining Translations for Consistency

The translation of a given sentence depends on the maximum global seateme as computed by
the final log-linear model in the rescoring stage. The global score magédted by different
models at different times, and there is no inherent smoothing that fostersrdiraitalations for
similar input sentences. Therefore, it sometimes happens that similar testcEnreceive rather
different translations. This lack of smoothness reduces the cohesw@f the translation and in

fact may favor mistaken translations.

| Asf| | IA ymknk

*k | | hnAk| | klfp| | HwAly ” vanynH dwlAr || IAIsAEp| | AlwAHdp |

| i'm sorry| | you can’t| | there in” the cosll | about| | eighty| | doIIars| | fora | one o’clock|

(Reference: sorry you can't there is a cost the charge igyedgilars per hour)

| EvAIA| [ymknk || Sgyl || AlifAz || HeY | [tqiE] [AITA}rp]

| excuse me |i | you| | turn| | until || the planei | departsi

(Reference: sorry you cannot turn the tv on until the plarsethken off)

Figure 4.1: Two baseline translations of Arabic sentences containingrtteersggation. The phrase
“IA ymknk” (“you cannot”), where “IA’ is the negation, is mistakenly segmehia the second
example such that the negation is lost in the translated sentence.

Consider the example in Fig. 4.1, taken from the IWSLT 2007 Arabic-tdifmgranslation
task [83]. The Arabic word “ymknk” means “you can” and “|A’ negatesutch that the phrase “IA
ymknk” means “you may not"/“you cannot.” In the first case, the Arabiateece is segmented
properly such that “IA ymknk” is put in correspondence to “you can'tiigh ultimately leads to
an intelligible translation. However, in the second case, the segmentatioeshece different as
“IA” and “ymknk” were put in distinct phrases. This in turn led to a differéranslation for each

word in the phrase and ultimately to the loss of the negation, which was semargssdigtial. The

88

complex interactions between various components of the final log-linearl tedde the surprising
outcome of making apparently non-systematic mistakes when presented with sipuitsr.

A few possible approaches to addressing this problem are summarized belo

» One obvious solution is to improve the word alignments and phrase estimatiese irhturn

would reduce the number of incorrect segmentations.

» A confidence feature may be added for phrases to encouragefiteijanslations over less

frequent ones.

 Similar input phrases might be forced to be always segmented in the sam&hisgpproach
falls prey to the well-known problem that natural language has many ambgtliaé make
proper segmentation possible only when context is taken into accountYeuglike Mary”

vs. “You are like Mary”).

Our proposed approach is to inject one additional feature function infogHenear model that
explicitly encouragesimilar outputs for similar inputs We can naturally add a semi-supervised
effect to this goal if we consider similar inputs not as measured betweemtraentences and test
sentences, but also across different test sentences. Such a featiion may improve the transla-
tion quality: If the system issues good translations more often than badfoagsjng consistency
in translation would favor (by way of similarity with the majority) correct transkasi@and would
avoid incorrect ones.

The converse risk is that an overall poor translation will be hurt evereropidropping minor-
ity correct translations in favor of incorrect translations that are similatheraranslations, also
incorrect. To some extent we are able to control this effect by adjustingethtive weights of
labeled-labeled and unlabeled-labeled connections. We assess impntv@émihe error rate by
comparing the improved system with a baseline system using the standard rBetho(tiscussed
in detail in § 4.4.7). As far as the more subjective topic of fluency and eoleeris concerned, we
provide a few illustrative examples.

It is worth noting that obtaining similar translations for similar inputs is to some eatezady

ensured by the training process, but only in an implicit form. Essentially,shenaption that similar

89

inputs lead to similar outputs is the basis of all statistical learning. Howeverjsbeete nature of
the signal and the interaction between models makes for sudden changpstitohoutput corre-
spondence. Also, as mentioned in 8§ 4.4.1, most of today’s SMT systengetfa test sentence
as soon as it was translated, so by design they are not conceivedtoesobnsistent translations
across the entire test input. An explicit constraining feature that uses sireddretween different
test sentences could improve the self-consistency of a translation anteffswith adaptation in
case the domains and styles of the training and test data are slightly different.

The plan is therefore to add a new feature function to the log-linear modestafte-of-the-art
phrase-based SMT. The new feature function is a regressed sabeéraed in 8 4.1. This is possible
because readily fits the definition of a feature function (Eqg. 4.51) and also bedaisseorrelated
with a suitably-defined similarity measure between sentences. That scegedssed using graph-
based semi-supervised learning on a graph that uses sentence qaice (@us target) as vertices
and links them using similarity edges. Using the initial SMT system as a baseknevaluate the
performance obtained after adding our feature function into the regcoradule. The following
sections shape out the details of problem definition, choice of similarity funafimta and system,

experiments, and commented results.

4.4.5 Formulation of Structured Graph-Based Learning for Machine Jlation

We first define a few concepts aimed at formalizing the notion of a sentence.

Definition 4.4.1. Let X be a finite set. Astring over alphabek is a finite catenation of elements
from 3. The concatenation of two stringsandt is denoted ast. Thelengthof a strings =
s5182...5, is denoted aks| = n (for empty stringgs| = 0). The set of all strings ovex is denoted

asXx*.

A sentence in a language is therefore a string consisting of a concateob@t@ments in the
vocabulary of that language. In general, instead of words, the adphamay consist of larger
units (e.g. phrases), smaller units (e.g. syllables or letters), or everedeamits added through
preprocessing such as word stems, roots, or other features. Favenage the word as a basic unit
in X. For the purpose of translation, we define the source vocabbilagnd a source sentenge

as a string oveEg, soX = X5. In symmetry with source vocabulary and sentences we define the

90

target vocabulary.r and the set of target sentence9as 7.

We construct our graph following Definition 5.5.1. Each test vertex sgms a sentengair
(consisting of source and target strings), and edge weights reptasszombined (source and tar-
get) similarity scores discussed in the next section. The hypothesis gerfarectiony is defined
simply as the/N-best list obtained from the first-pass decoding. We add a few paranagimns
to the graph construction process aimed at speeding up the training rdeeen a training set
consisting of sentences, ..., x; that have the reference translations. . . , y, a test set with sen-
tencesx: .1, ---, Xs1u, @ Scoring functiors, and a hypothesis generator functipnconstruction of

the similarity graph proceeds as follows:

1. Foreachsenteneg,i € {t+1,...,t +u} inthe testinputs, compute a 9&ain, Of similar
training sentences and an ordered set of similar test sent€pgedy applying a similarity

functiono (discussed in the next section):

Phain, = (z € (=1, %)) |2 # xi Ao((x,€), (xi,€)) > 0) (4.54)

ltest = (€ (xet1,- - xem)) [2 #xiNo((,€), (xi,€)) = 0)) (4.55)

wheree is the empty sentence. Using the empty sentence in the target position means that

similarity is to be applied to source sides only. Note that we never compute similarities

between two training samples becalisgin, andI'es; are only defined for < i < t 4 u.
Only those sentences whose similarity score exceeds some thréshotdretained. The
sentence; itself is not made part of's;. Different values ofy can be used for training

vs. test sentences; however, here we use the §dordoth sets.

2. For each test sentence-hypothesis gaif, (x(x;));)) that has a non-emp#iain,, COmpute
the similarity with each pair(xy, yx)) Vi € Iyain,. Similarity is defined by the similarity

score
wijk = o ({(xs, (x(%:));)) 5 (0> y&)) (4.56)

If w;;x > 0, then connect the verticelgx;, (x(x;));)) andv with an edge of weight; ;x, and

connect the verticegx;, (x(x;));)) andv_ with an edge of weight — w; ;..

91

3. Similarly, for each two pairs of test sentences and their hypoth¢segx(x;));) and
{(xx, (x(xx)),) , compute their similarity and use the similarity score as the edge weight

between vertices representin@;, (x(x;));)) and (xx, (x(xx)),) -

wikt = o ((%, (x(x0));)) 5 =y (x(x8))1))) (4.57)

Figure 4.2 shows a sample similarity graph. The setup is similar to a maximum floveprob
with capacities proportional to edge weights, sourceand sinkv_. Indeed, after solving the max-
imum flow problem, the pressure at each edge is proportional to the sedr&sction [1, § 10.6].
Alternatively, there is an analogy with an electric circuit havingconnected to a 1V potential,-
connected to the ground, and edge conductances given by their weigtitat network, the vertex

potentials are equal to the regressed scoring function [1].

4.4.6 Decomposing the Similarity Function into Partial Functions

As defined in § 4.2, the similarity functian accepts two pairs of inputs and outputs. However, the
graph construction method defined in 8 4.4.5 passes in certain cases theseniphce to o in the
target sentence position. We need to define the semanticambropriately such that it can handle
incomplete arguments.

One simple approach is to requireo be a mean of two partial functions, one operating on the

input side and the other on the output side:

o {z,y), (2"y')) = m(fx(z,2), fy(y.¥)) (4.58)
where:
fx + X —]0,1] (4.59)
fy + Y—1[0,1] (4.60)
m : [0,1] x [0,1] — [0, 1] (4.61)

Functionsfy and fy compute partial similarities on the input and the output side respectively,
andm is a mean function (e.g. arithmetic, geometric, or harmonic) that combines thepacase

scores. This form is not appropriate for all structured learning prneblbecause it is unable to

92

Figure 4.2: A similarity graph containing a source vertexwith label 1, a sink vertex_ with
label 0, and several intermediate vertices that may or may not be condéetetty to a source. Edge
weights are not shown. Label propagation assigns real-valued ldbefeavertex that regress the
harmonic function for the graph. A given vertex’s label depends orpitsections with the source
and sink, and also of its connections with other vertices. In order to beingdally assigned a
score, each test vertex must have a path (direct or indirect) to at leasifdhe train vertices
andv_.

capture dependencies between inputs and outputs. However, the Stémsye integrate with
has several other models that are concerned with proper input-outgimga Thus, we count
on the rest of the system to capture such dependencies and we chisosedlsure on grounds
of simplicity, noting that other similarity kernels that could capture alignment m&bion might

perform better here. This is an interesting venue for further research

Due to the fact that the input and output domains are topologically similart(par being

defined over different vocabularies), we choose to defires a mean of two identical functions

93

defined over strings of words from different vocabularies:

o({@,y), (@', ")) = mloss(2,2'), 05 (y.9)) (4.62)

In this application we choose to be the geometric mean. The geometric mean is better suited
for our notion of similarity than arithmetic mean because in order for the geonmé&am to be
relatively large poth source and target side sentences must be similar. In contrast, arithmetic mean
yields relatively large values for highly discrepant inputs. We confirmatigaometric mean yields

better bottom-line results than arithmetic mean on our experimental test bed.

Geometric mean is still possibly suboptimal because it assigns equal impottatheesource
and target sides. The two sides have an inherent asymmetry becausesonrite side the sentence
are always correct, whereas the target side comprises the test hsgmtheéhich are potentially
incorrect, and the reference translation, which, being performed mahuranslators, is subject
to considerable variability. The source side comparison is therefore ratiable; on the other
hand, the target side comparison is also informative because it can distirgpod translations
from bad ones. Additional sources of information regarding the transléiach as alignment) may
be integrated in the definition of the mean function. This study does not @tingse potential

directions.

The following sections focus on defining a similarity measwyeover sentences constructed
over some general vocabulayy it is assumed that they will be integrated into the composite sim-
ilarity function o as per Eq. 4.62. Choosing the similarity measure essentially determines the per-
formance of the scoring function The similarity measure is also the means by which domain
knowledge can be incorporated into the graph construction process. 8ymitay be defined at
the level of surface word strings, but may also include more linguistic infdomgsuch as morpho-

logical features, part-of-speech tags, or syntactic structures.

This study compares two similarity measures, the& 8 score [180] and a score based on string
kernels. Whereas the former is a reasonable baseline choice becasee tihe same optimization

criterion for training and for evaluation, the latter yields better results intigeac

94

4.4.7 Using théBLEU Score as Sentence Similarity Measure

BLEU is one of the most popular automated methods for evaluating machine translaaidy. dt

is based on the simple principle that the closer an candidate translation is teet t@nslation, the
better it is deemed to be by a human arbiter. In turn, extensive experimemtsiavn that good
automated translations tend to share margrams with human-written reference translations for a
range of small values of. To compute the amount of shareejrams for a given value of, BLEU
uses a measure calletbdified precisionThe occurrences of each distincgram in the candidate
sentence are counted, but only up to the maximum number of occurrehtted n-gram among

all reference sentences. (This prevents an artificially good precisiocahdidates consisting of
repeated frequently-encountereejrams.) Then the precision is computed normally by dividing
the obtained count by the total number of distinagrams in the candidate sentence. The geometric
mean of all modified precisions is computed fore {1,2,3,4}. Finally, a brevity penalty BP
multiplies the result because modified precision favors short sentengesa(@ne-word sentence
that matches one of the words in the reference sentence has modifiesioprequal to 1).

In detail, the BEU score is given by the equation:

4
1
BLEU = BP- exp (4 nz:llogpn> (4.63)

wherep,, are probabilities computed fergrams of length: as follows?

t+u
>) min (Count, (ngram, MaxRefCount(ngram)
D = i=t ngramey; - (4.64)
> Y Count,(ngram
i—t Ngraney;

The outer sum iterates over all sentences in the tespsds (computed globally). The inner
sum iterates:-grams in one candidate translation. The quantity Cdogtan) is the count of a
given n-gram within the candidate translatign, and the quantity MaxRefCouihgram is the
maximum number of occurrences of thagram in any of the reference translations of sentence
(In general, a translation task may avail itself of several referencslétéons.) Again, thenin is

taken to avoid repeated correcigrams from imparting an artificially good quality to a translation.

"We slightly depart from the original notations [180] so as to integrate that@ms within our notational system.

95

The brevity penalty BP is computed as follows:

1 ifc>r
BP = (4.65)

=2 ife<y

t4+u
wherec = Z lyi| is the total length of the candidate translation, ar&the length of the reference

translationl.ﬂ\:Nhen there are multiple reference translations, severdimasi@xist as to how the
reference translation length is defined. The original definition takes fiieree length closest tg
the NIST definition [170] takes the shortest reference length; and atitbors take the average
length of all references. The data we used for experiments (8§ 4.5haeme reference available.
In using BLEU in our application, we consider each sentence one document, so thewtisr s
inoperative. Also, there is only one “reference” (the other sententieilsimilarity computation)
so MaxRefCount is the same as Count for that sentence. So for twoagysentences and s’

defined over the same vocabulasy,becomes:

> min(Count(ngram, Count, (ngram)

ngrames

(s, s’) = (4.66)

> Count,(ngram

ngranes

BLEU is not symmetric; in general,(s,s’) # pn(s’,s). For computing similarities between
train and test translations, we use the train translation as the reference @pbsition). For
computing similarity between two test hypotheses, we computuBn both directions and take
the average.

BLEU is arguably a relevant sentence similarity measure to considerdbteast as a baseline.
This is because BEU has been extensively used to measure the quality of translations andenas be
shown to correlate well with human judgment [180, 54]. In addition, theoperdnce of the end-to-
end SMT system is measured usinge®, so it is sensible to internally use the same performance
measure as the one used in evaluation.

However, B.Eu has known disadvantages when applied to sentence-level similarity, agswell
in general. Even as early as its initial introduction,e® has been meant and shown to be a good
measure only at document level. The counts are accumulated over aticeniie the document and

then BLEU is computed; computing IBEU for each sentence and then averaging the results would

96

yield a different score. This introduces noise in the similarity graph and is u#lynaptimizing a
cost function that is not directly related to the final evaluation. Also, pts/audies [38, 4, 47] have
pointed out further drawbacks oftBu. BLEU is not decomposable [47], meaning that a variation
in the score for one individual sentence’s translation is not alwaysctefl into a corresponding
variation of the overall translation score. Also,BJ allows too much variation across translations
of a given sentence, and a strict increase ireB is not always correlated with an increase in

perceived quality of translation.

4.4.8 String Kernels as Sentence Similarity Measure

Guidance for a better sentence similarity measure can be found by anadymireyshortcomings
of the BLEU scoring method. One issue is rigidity-grams fail to catchapproximate matches
that deliberately ignore extra words intercalated amongntigeam constituents. For example the
phrases “lorem ipsum dolor sit amet” and “lorem dolor feugiat elit ameteéhaxommon the sub-
sequence “lorem dolor amet,” albeit with gaps in both strings. To catchagymfoximate matches,
we need a notion of similarity and substring matching that is more permissivefiheseghes based
onn-grams. For example, from aLBuU scoring perspective, the phrases “red flower,” “red beautiful
flower,” and “red pretty flower” only have two unigrams and no bigramammon. However, it
is clear that the two sentences also have some longer-distance similaritg®dicay both embed
the string “red flower,” albeit with a gap in the last two cases. Scoringdarsei-grams fails to
measure such similarity, and gapped matches are a smoother similarity medaeenbgentences
that adapts to the variability of natural language. Granted, sometimes a missirsged word
may dramatically alter the meaning of the sentence, but there also are coniblhataany gapped

substrings in a given string, so as long as gapped string similarity is statistidgty™much more
often than “wrong,” it will properly tolerate and overcome the occasiowiy terms. A similarity
measure based on gappedyram is fine-grained as it is composed of many terms. In contrast, for
n € {1,2,3,4}, a sentence may have cumulatively only up té - |s| distinct n-grams? which
makes each mistaken match relatively more expensive. The downside isalmagthdimension-

ality of gapped similarity makes the function value vary wildly from very smalf (faost strings)

2Assuming padding with null symbols to the right.

97

to extremely large (for long strings that are almost equal). Normalizationjshisd in § 4.3.1.1, is
an effective measure against such a large dynamics. It is possible tratggressive smoothing
schemes could add to the effectiveness of the measure.

A good starting point in defining a better similarity measure is to empliiy distancemea-
sures [61, 141], which allow, with penalty, sentences to match in spite of milifteeences, gaps,
and extraneous words. Efficient data structures and algorithms anenkfioo computing edit dis-
tances. Edit distances have a strongly local bias, in that they requiedyiaiigned strings and
only allow for local differences between them. In contrast, translatiomsgdfen sentence may be
correct in spite of considerable local differences, caused e.g.d®ring. To overcome the rigidity
of the edit distance measure when used in a translation context, WatarthBeraita [226] intro-
duced a modified edit distance measure that integrate-ttie criteria [195], measure that was
subsequently used by Paul et al. [181] in defining a rescoring syste@®MT. Other uses of edit
distance as a similarity measure have been explored in the NLP literaturelfi®234, 183] and
have involved a human translator in a semi-automated evaluation loop. For eX&B8#jlea human
would edit (attempting a minimum of insertions, deletions, and replacements}@nated trans-
lation until it had the same meaning as the reference translation (but, crun@llyecessarily the
same sentence structure); after that, the quality of the automated translasi@ssessed by using
the edit distance between the automated translation and the human-modifitatitnans

String kernels (§ 4.3.1.3) are a general and efficiently computable similarityuneetisat is
smoother than edit distance. To improve the matchwofgapped string kernel with thelBu score
used for evaluation, we define a weighted kernel obtained by averaging different kernels. The
BLEU score focuses not on one specifigram size, but instead computes a weighted average of
similarities for alln-gram sizes up to a limit. The intent is to capture similarity between sentences
with increased exigency. Experiments [180] have confirmed that similaniturigrams reflects
comprehensibility of the translation, whereagram similarity for higher values of reflects flu-
ency (BLEU uses values af up to 4).

A similarity function based on gap-weighted kernels of a fixed lemgttould generalize sim-
ilarity as measured with Bzu by allowing gaps in thei-grams, bunly for one specifia-gram
length In order to truly generalize B=u scoring, we define similarity not as a gap-weighted simi-

larity of lengthn, but instead as a weighted sum of gap-weighted similarities for sizesmupltois

98

way we finally obtain the kernel-based similarity definition, which we will use ineogperiments.

Definition 4.4.2 (Kernel-Based Similarity for Machine Translatior(iven a finite sek, n € N*,
A€ (0,1, andW = (wr,...,wy) € R with Zwi = 1, we define thenormalized gapped

i=1
similarity of sequences oveér up to lengthn with penaltyl and weightdV as:

Os AW 2" X 5 — [0, 1] (4.67)
Tsnaw(s,t) =Y w; - knia(s,t) (4.68)
=1

whereisy ; » is the normalized-length gap-weighted string kernel over alphabBetith penalty\.

In our experiments we use = 4 because the evaluation methodLf®) uses up to 4-gram
similarity. The resulting similarity function is bounded by the interiéall], is 1 only for identical
strings and 0 only for strings that do not share any word (assuming tigitsevectorit has no
zero values). The functiomy, ,, » w Will be used on the source side and on the target side as partial
similarities in the overall similarity function as described by Eq. 4.62. The gusgdunction across
the source and target side is geometric mean.

Here are a few examples showing valuesogf,, xw for n = 4, A = 0.5, and W =
(0.25,0.25,0.25,0.25))
s1 = life is like a box of chocolate
s9 =i would like a box of sweet chocolate
s3 = your chocolate is in a box
s4 =1 have chocolate
o naw(81,52) = 0.444696
o w(S1,83) = 0.213679
o naw (52, 84) = 0.134101
o naw(83,54) = 0.0833421

As expected, similarity is strong when there are relatively many matches alteigaps 6,
s2), but is more pronounced when the order of word is different {3), when gaps are longesd,

s4), or when strings only share few unigranss,(s.).

99

4.5 Experimental Setup

We evaluate our use of graph-based learning, with bateuBand kernel similarity, against the
IWSLT 2007 Italian-to-English and Arabic-to-English travel tasks [8B/]1 The Italian-to-English
translation is a challenge task, where the training set consists of readss)tbut the development
and test data consist of spontaneous simulated dialogs between woutdidleatyents and hypo-
thetical tourists seeking information, extracted from the SITAL corpu [#Qis is a particularly
interesting task because it requires some adaptation capabilities of the mogl@lrabic-to-English
translation challenge, known as the “classic vintage” BTEC task consigtsvel expressions sim-
ilar to those found in tourist phrasebooks. For our experiments we dhestext input (correct

transcription) condition only. The data set sizes are shown in Table 4.1.

Set # sent pairs #words #refs
IE train 26.5K 160K 1
IE devy 500 4308 1
IE dew, 496 4204 1
IE eval 724 6481 4
AE train 23K 160K 1
AE deyy 489 5392 7
AE devs 500 5981 7
AE eval 489 2893 6

Table 4.1. Data set sizes and reference translations count (IE = Italiénglish, AE = Arabic-to-
English).

We divided the Italian-to-English development set into two subsets; cantaining 500 sen-
tences, and devcontaining 496 sentences. We use d&v train the system parameters of the
baseline system and as a training set for GBL. Then, dewsed to tune the GBL parameters.
In keeping with most of today’s SMT systems, we used additional out-ofadio training corpora
in the form of the Italian-English Europarl corpus [124] and 5.5M wartlaewswire data (LDC

Arabic Newswire, Multiple-Translation Corpus and ISI automatically extchgi@rallel data) for

100

the respective languages. The additional training data was used botk bpgbline system and
the GBL system.

The baseline system is created out of the components usually employed $iihessearch
community and yields results on a par with today’s state-of-the-art. Oulilase a standard

phrase-based SMT system based on a log-linear model (8§ 4.4.3) withltvaifig feature functions:

two phrase-based translation scores;

two lexical translation scores;

word count and phrase count penalty;

« distortion score;

* language model score.

We use the Moses confusion network-based decoder [128] with damag limit of 4 for both
languages. The decoder generatdsest lists of up to 2000 non-unigue hypotheses per sentence in
a first pass. In the second pass a trigram model based on parts dfi $pesed. The part of speech
sequences are in turn generated by a Maxent tagger [186]. Thealg@guodels are trained on the
English side using SRILM [209] and modified Kneser-Ney discountingHerfirst-pass models,
and Witten-Bell discounting for the POS models. Refer to [120] for mordldethout the machine

translation system.
4.6 Experiments and Results

We first investigated the effect of only including edges between labekbdr@abeled samples in the
graph on the Italian-to-English system. This eliminates any semi-superviged & similarities
among test samples are not taken into consideration. The graph contaihinotabeled-to-labeled
edges is equivalent to using a weighted nearest neighbor rankemtheadh hypothesis, computes
average similarity with its neighborhood of labeled points, and uses the rgsal@nage for rerank-
ing. The GBL-learned score is made part of the log-linear model, and tgedgh retrained for all

models.

101

Starting with the Italian-to-English task and themJ-based similarity metric, we ran parameter
optimization experiments that varied the similarity threshold and compared arithraegieametric
mean of source and target similarity scores. Geometric mean was consiséttahelperimentally.
As mentioned in § 4.4.6, our conjecture is that geometric mean is better suiteztfangosing the
similarity function because it better penalizes similarity between sentencesdlméghly discrepant
across languages (very similar in one language and very dissimilar in thrg. dthinis experimental

stage we also choge= 0.7.

4.6.1 Experiments on ltalian-to-English Translation UsBigeu as Similarity Measure

After the initial stage, we performed our main experiments with three differtoips affecting the

strength of the semi-supervised effect, as shown below.

(a) no weighting:similarities are kept as they are;

(b) strongly favor supervisiontabeled-to-unlabeled edges were weighted 4 times stronger than

unlabeled-unlabeled ones;

(c) mildly favor supervision:labeled-to-unlabeled edges were weighted 2 times stronger than

unlabeled-unlabeled ones.

The weighting schemes lead to similar results. The best result obtainedofls} shgain of
1.2 BLEU points on the development set and 1.0eB points on the evaluation set, reflecting PER

gains of 2% and 1.2%, respectively.

4.6.2 Experiments on ltalian-to-English Translation Using the String Kernel

We next tested the string kernel based similarity measure. The paramets wadte a gap penalty
A = 0.5, a maximum substring length &f = 4, and weights 0.0, 0.1, 0.2, 0.7, for unigrams,

bigrams, trigrams, and 4-grams respectively. These values werenchessstically and were not
tuned extensively. Results (Table 4.3) show improvements in both develoamenest set. The

absolute gains on the evaluation set are 2.6 Bpoints and 2.8% PER.

102

Weighting dey eval

n/a (baseline) 22.3/53.3 29.6/45.5

@) 23.4/51.5 30.7/44.1
(b) 23.5/51.6 30.6/44.3
(©) 23.2/51.8 30.0/44.6

Table 4.2: GBL results (%B=U/PER) on the IE task for different weightings of labeled-labeled
vs. labeled-unlabeled graph edges éB-based similarity measure).

System dey eval

Baseline 22.3/53.3 29.6/45.5
GBL 24.3/51.0 32.2/42.7

Table 4.3: GBL results (%B=U/PER) on the Italian-to-English IWSLT 2007 task with similarity
measure based on a string kernel.

The BTEC task has test data with different characteristics than the traiatagwhich means
that an adaptive machine learning system would be at an advantagd-i&rsgd learning is inher-
ently adaptive, so it is interesting to gauge to what extent adaptation cdattithe better perfor-
mance of the GBL system.

GBL being an inherently adaptive technique, a natural question to asketharthe improve-
ments brought by GBL still hold when a small amount of in-domain data is availaldesffect
adaptation in the baseline, we train the baseline system on the concatenatiendeivelopment
and training set. This avails the phrase table of the phrases that are stijistiffarent from the
train set and close to the test set. We first optimized the log-linear model cdinhimaeights on
the entire dey, , set (the concatenation of degnd dey in Table 4.1) before retraining the phrase
table using the combined train and gey data. The new baseline performance (shown in Table 4.4)
is, as expected, much better than before, due to the improved training dattheWadded GBL
to this system by keeping the model combination weights trained for the presystesm, using

the N-best lists generated by the new system, and using the combined trainydetas a train set

103

for selecting similar sentences. We used the GBL parameters that yieldedsthgeloformance in
the experiments described above. GBL again yields an improvement of_k13 oints and 1.2%

absolute PER.

System BEU (%) PER

Baseline 37.9 38.4
GBL 39.2 37.2

Table 4.4: Effect (shown on the evaluation set) of GBL on the Italian-tghEmtranslation system
trained with train+development data.

4.6.3 Experiments on Arabic-to-English Translation

For the Arabic-to-English task we used the thresltbld 0.5 and an identical setup for the rest of
the system. Results using Bu similarity are shown in Table 4.5. The best GBL system improved
results on the evaluation set yields by 1.2E points, but only by 0.2% absolute in PER. Overall,
results were highly sensitive to parameter settings and choice of the teBosetxample, testing

against dey, a surprisingly large improvement in of 2.1.Bu points was obtained.

Method dey dey eval

Baseline 30.2/43.5 21.9/48.4 37.8/41.8
GBL (BLEU similarity) 30.3/42.5 24.6/48.1 39.0/41.6
GBL (kernel similarity) 30.6/42.9 24.0/48.2 38.9/37.8

Table 4.5: GBL results (%B=U/PER) on the Arabic-to-English IWSLT 2007 task with similarity
measure basedl&u, 6 = 0.5.

Overall, sentence similarities were observed to be lower for this task. @serrenay be the
already known difficulties in tokenizing Arabic text [99, 76]. The ArablieEnglish baseline system

includes statistical tokenization of the source side, which is itself errorerothat it can split the

104

same word in different ways depending on the context. Since our similaritgureshas word-level
granularity, this dampens the similarity of sentences on the source side makiregas them fall
below the threshold. The string kernel does not yield sensible improvemmenthe B eEu-based
similarity measure on this task. Two possible improvements would be to use sdlgvemularity
on the source side (which would, however, impact adversely the sfidieel ®ystem), and/or use an

extended string kernel that can take morphological similarity into account.

4.6.4 Translation Example

Below we give an actual example of a translation improvement, showing tleessentence, the
1-best hypotheses of the baseline system and GBL system, respedtiecheferences, and the

translations of similar sentences in the graph neighborhood of the ceamstance.

Source Al+ mE*rp Aymknk{ItgAT Swrp InA

Baseline i'm sorry could picture for us

GBL excuse me could you take a picture of the us
References excuse me can you take a picture of us

excuse me could you take a photo of us

pardon would you mind taking a photo of us

pardon me could you take our picture

pardon me would you take a picture of us

excuse me could you take a picture of us
Similar sentences could you get two tickets for us

please take a picture for me

could you please take a picture of us

105

Source Al+ mE*rp Ayn Tryq Al+ xrwj

Baseline excuse me where the way to go out
GBL excuse me where is the way to go out
References excuse me where’s the way out

pardon me how do i get out of here
excuse me where’s the exit
pardon me where is the exit
excuse me where’s the way out
excuse me where’s the way out
Similar sentences where is the music hall
where is the household appliances department
where is the fancy goods department

where’s the air france counter

4.7 Related Work

There are several recent approaches of structured problems with@B work is the first attempt
at formalizing and applying GBL to SMT in particular.

Ueffing et al. [219] apply self-training—a different semi-supervisediang method—to SMT,
with a focus on adaptation, obtaining improvements on French-to-EngliskClhimése-to-English
translation tasks. Altun et al. [7] apply transductive graph-basedaegation (a method akin to
label propagation that also works on a similarity graph) to large-marginitegom structured data.
The graph regularizer leads to a more expressive cost function (velhchis more robust in the
presence of noisy training samples), but requires solving a quadratjcaon,with which scalability
quickly becomes an issue. String kernel representations have bemuSK¥IT in a supervised
framework [213]. Finally, our approach can be compared to a prob#bitigplementation of trans-
lation memories [156, 221, 132]. Translation memories are intended to helmhuanslators by
offering a database, a fuzzy query language, and an interactigeleorThe human translator can
consult the database for translations with a source sentence (or segmala) to the sentence

(segment) to be translated. A semi-supervised aspect of translation meystams is that the op-

106

erator may also update the database with a new translation that is deemetl @@uaresystem not
only is entirely automated, but is able to propagate similarity (akin to a fuzzy matchrémslation
memory) from other unknown sentences to the sentence of interest. Btaatyproposed a combi-
nation of a translation memory with statistical translation [152]; however, treat@mbination of

word-based and phrase-based translation predating the currasegtaised approach to SMT.

107

Chapter 5

SCALABILITY

This chapter discusses how the proposed graph-based learnirgpelpgs can be applied to

large data sets, which are frequent in realistic NLP problems.

Scalability is a general term with several definitions; this chapter loosely/theeterm “scala-
bility” to refer to the ability of an algorithm to operate on large data sets (e.gteogporary HLT
corpora), as well as the ability of achieving results faster and/or operalarger data sets when
more computational resources are added. Scalability is affected bybktaetors, the most impor-
tant being algorithmic complexity. Algorithms that requifén”) time and/or space (whereis
the size of the input) have difficulty scaling up fer> 1. Colloquially, an algorithm is considered
scalable if its time and space complexity &én logn) or better. Algorithms (and the structure
they impose over data) are the most important aspect of creating a scgistel® sAlso, a dimen-
sion of algorithms that has become of high importance today is parallelizativen €falability is
concerned with improving the speed or capacity of a system in proportioe totnputational re-
sources available to it. An algorithm that can be decomposed in separatefutable tasks scales
better than one with a more serial data dependency pattern.

The statistical properties of data also affect scalability of a learning systaunhine learning
algorithms often make fundamental assumptions about their input’s propditiegxtent to which
these assumptions are met affects the running time of the algorithm. For exampl&al network
will take a longer time to train if data is noisy and not easily separable.

Last but not least, implementation and systems-level optimization aspects émebedagnored.
Often, changing a constant factor that is irrelevant with regard to coiitylaluences the time be-
havior of the algorithm considerably. Furthermore, on contemporatgmgsfeaturing deep mem-
ory hierarchies, data set size often affects speed dramatically, sometimoisgléo paradoxical

effects.

With regard in particular label propagation, the essential scalability issarebe summarized

108

as follows:

« In-core graph sizethe matrice®y; andPyy grow withu - t andu? respectively;

* Graph building time: building Py, and Pyy entails computing the similarities (x;, x;),
ie{l,...,t}andj € {t +1,...,t +u}, plus the similaritiesr (x;,x;), i,j € {t +
1,...,t +u}, which, in a direct implementation, adds to a total count of similarity evalua-

(u—1)
2

tionst-u+ ° . Such computation becomes prohibitive even for moderately-sized data

sets.

» Hyperparameter tuning:Optimization of ancillary hyperparameters is a machine learning
problem in its own right. A poorly chosen hyperparameter can affectigfogitnm adversely,
whereas an extensive hyperparameter tuning process adds to theutwiiaigrtime of the
algorithm. Tuning is particularly important in semi-supervised learning: Thekef labeled
data typical to SSL setups also translates to low availability of cross-validadian(éhich is

used for tuning model parameters).

In wake of the varied concerns raised by scalability, this chapter includeis of theoretical-
algorithmic and practical-implementation considerations. Scalability being acottisg issue, we
believe that the best strategy is a holistic approach that systematically seklthe problem at all

levels. Throughout this chapter, we will show how scalability is improved byfdhowing tactics:

 Improve algorithmic complexityf-or the graph building step, we exploit the structure of the
input (feature) space. The exact method depends on the properties gppace, for exam-
ple we use very different approaches in string space (Chapter glisyeontinuous space
(Chapter 3). For the label propagation step, we define an acceleeafeengial convergence

algorithm and a parallel extension of it.

» Reduce the in-core data set siz&iven a set of training and test data, we are aiming at

reducing the size of the in-memory structures that support the labelgatpa algorithm.

109

» Use simple, scalable, principled hyperparameter tuniridgyperparameter tuning for the
Gaussian kernel used in conjunction with distance measures (8 2.1) isnmdparoblem
of its own, which affects the duration of graph construction. In this cmapéepropose a

simple and scalable tuning method inspired from maximum margin techniques.

Our approach to reducing computation and shrinkiggandPyy in size is to take advantage
of the structure of the input features to efficiently estimate the most similar iteren, Tve ap-
proximate the rest to zero. The result is a graph with fewer edges—aoxapation of the “real”
graph, but one that is of good quality because the most important edgkegr (In fact, in most
problems, the similarity measure is only an estimate of the real similarity between sasgpédim-
inating low-weight edges often helps reducing noise in the graph.) Giatritt approximatey,
andPyy have many slots equal to zero, we can store them as a sparse matricegjéblsolves the
size scalability issue too.

We start by proving a few properties of interest of the label propagalmgorithm, after which
we will give an improved definition of the algorithm. The properties concegretiolution of inter-
mediate solutions (they matrix) during iteration towards convergence, and will allow us to devise
algorithms that converge faster. We will show that intermediate solutions mmvotonically when
starting from zero, and that improving an arbitrary elementimproves the global solution as

well (individual improvements are never in competition).
5.1 Monotonicity

How do elements of; evolve throughout Algorithm 1? Answering this question gives insight into
accelerating convergence, and also gives information about numdgilitgtand early stopping. To

this end we provide the following theorem.

Theorem 5.1.1.When starting wittt; = 0 in Algorithm 1, each element 6f; increases monoton-

ically towards convergence.

Proof. By induction over the iteration step

Base: Fort = 1, £5°°' = Py Y. Sincefy ™ started at zero(fﬁtem)'_ > (fﬁtepo)” Vi €
ij i

J
(1,...u},je{1,....0.

110

Inductive step: At step+ 1

f[sltethrl B f[sltept _ l:>qu§tept T PuYL — PUUf[sIteptfl — PuYyL (5'1)
= Py (fffept - fffept’l) (5.2)
. . . _oStept stept—1 s .
By the induction hypothesig,; "~ — f; has only positive elements, so all elements in the
product are also positive. O
Note that since; "' = Py Yy, it is trivial to verify that
(Puvr)y; < (£5°°) <1 Vie{l,..uhje{l,....0} (5.3)
¥
whereff}te"oo is fy after convergence. This suggests that for faster convergencedachoice for

the initial £y is in the middle of its possible range:

PuYp),, +1
(ff}tem)ij _ (Putu)y 1 (5.4)

2

We will use monotonicity to a greater effect in stochastic label propagatiorbi2.8Also, mono-
tonicity has an important consequence with regard to numeric stability. Asegdpo convergence
through alternating values, monotonic convergence always finisheswdven computation is af-

fected by limited precision.
5.2 Stochastic Label Propagation

The order in which graph vertices are considered, i.e., the order sfirandyY; do not matter for
convergence beyond node identity because none of the previouslyndated theorems rely on
a specific order. Indeed, in the method of relaxations [68] (which isialseri-dimensional label
propagation iteration) nodes are spanneddameorder, not a specific order. Intuitively, the order
could even be changed from one epoch to the next. In the following we @rgpowerful theorem
that states not only that nodes can be spanned in any order, but ea@adam order, without regard
to possibly updating a node several times before updating all (or any)sotli& course, doing
this practically would be detrimental to performance, but this theorem has tampa@onsequences
with regard to unsynchronized parallel execution of label propagai®well as accelerated serial

implementations.

111

First, let us introduce a new algorithm for label propagation. Insteadiofjunatrix algebra to
update all elements df; in one epoch, Algorithm 2 updates exactly one randomly-chosen element

at a time.

Algorithm 2 : Stochastic Label Propagation

Input: Labels (y1,...,y) € {1,...,£}*; similarity matrixw € R+ with
wij =w;; > 0Vi,j € {l,...,t+u}; tolerancer > 0.
Output: Matrix £y € [0, 1}““ containing unnormalized probability distributions over labels.

1W¢i<—0Vi€{1,...7t+u};

Py — el Vij e {l,...,t +u}; /I initialize P

Y
k=1

3 (YL)rowi < Oe(yi) Vi€ {1,...,t}; /I initialize e
4 fy «— 0;
5 repeat
6 i< random integerifl,...,u};
7 j < random integeridl,...,¢};

(fU)ij A (PULYL>ij + Z (PUU)ik(fU)kj;
k=1

(Pyufy + PULYL),-]- — (fU)Z'j <7,

until max
ie{1,...,u}
jelL,...0}

©

Algorithm 2 is of no practical use because it is very inefficient: it perfoonly one update
and then a full test for the harmonic property fgrfor every iteration. Moreover, one update does
not guarantee progress because it is possitzle that the particular elgmeah did already satisfy
the harmonic conditior(nfu)ij = (PULYL)U + Z (Pw)ik(fu)kj before the update. The purpose of

k=1

Algorithm 2 is solely to demonstrate that element updates can be performetyiaryuorder. We

now prove a lemma that is needed for the proof of convergence.

Lemma 5.2.1. If w and Y allow a harmonic matrixt;°, then at the beginning of any iteration of

Algorithm 2,(fy),; < (£5°);; Vi € {1,...,u},j € {1,...,(}.

112

Proof. By induction on iteration steps.
Base: Matrixfy starts at zero. The first update sets the sl¢ft0,; to (Py.Yr),;. Then(fy),;; <
(£5°)i; because® is the sum oPyyf;° andPy Yy, andPyyfy” has only nonnegative elements.
Inductive step: By the induction hypothesis, before the updete),; < (£g°); Vi €
{1,...,u},j €{1,...,¢}. Therefore

u

(PuLYL)s; + Y (Puu) i (£0); < (Po¥i)iy + Y (Poo) iy (£5°)ks (5.5)
k=1 =1

as weighted average with positive coefficientBgp. But the right-hand side term is equal(®}°);,

so the new value is less than or equa(£g°);;, which concludes the proof. O

Lemma 5.2.2. At the beginning of each iteration of Algorithm 2, the following condition is sadisfie

Vie{l,...,u}l,je{l,...,¢}:

(fu);; < (PuYe);; +) (Puu) i (fu)y; (5.6)
k=1

Proof. By induction on step.

Base: Before the first stepfy),; = 0 < (PuLYr),;-

Inductive step: During thé + 1)th step, all elements are not updated (thus vacuously satisfying
monotonicity), except one, call (EU)U. Taking the difference between the values before and after

stept + 1 yields:

[=1

(65%1) = (55%) = Cue)y+ > Py (5%) — (85%))
1)) & “

By the induction hypothesis{,fﬁteptH) - (fﬁtept> ~>0. O
ij ij

As a direct consequence of this lemma, elementgdficrease monotonically throughout iter-
ations of Algorithm 2. We have shown th&f has monotonically increasing elements and f{gs
as an upper bound, so by the monotone convergence theorem theseaexiatrixf;; = tlit& fy.

It is necessary to prove thaf = £3°, asfy may stop updating, leaving Algorithm 2 iteratiag
infinitum Therefore we provide the following theorem. It is different from thegbiof convergence
of classic label propagation [237] and from Theorem 2.3.2 by randomlyoiwmy one element of

the fy instead of the entiréy.

113

Theorem 5.2.3. If the random selection of and j in Algorithm 2 reaches every element in
{1,...,u} and {1,..., ¢} respectively with probability greater than a constant> 0, then Al-

gorithm 2 converges in the same conditions and to the same solution as Atgdrith

Proof. Givenp > 0, updating any given element ihis a binomial stochastic process that updates
each element with probability approaching 1 for~ oo. By the two previous lemmas, elements

in £ are monotonically increasing and bounded, so there exfsts lim £5°P' That matrixt};
— 00

u
satisfies(£5)i; = (Pu¥u);; + > (Pow)i(£7)k; Vi € {1,...,u},j € {1,...,¢}, which is easily
k=1
recognized as the element-wise form of the matrix relafipr= Py Y. + (Py),, £y . But there is

only one harmonic function satisfying the relation foandy, sof* = £*°. O

5.3 Applications of Stochastic Label Propagation

Theorem 5.2.3 is very powerful because it offers an algorithm theléieto update the elements
of fy under absolutely any schedule, without any ordering restriction. Mereand most impor-
tantly, convergence may also be faster than in the classic iterative lalpelgation because a new
value (fy),; that is closer to the desired result is used immediately, as soon as it is comgmited,
opposed to the epoch-oriented approach in which a whole set of updatesputed on the side
in one iteration to be used in the next. (However, memory hierarchy effectst migke such an
implementation potentially slower if the order in whig¢h is spannedis cache-unfriendly.) Most
interestingly, Theorem 5.2.3 allows updatestgfperformed by concurrent processes operating on
different row sections oP. The fact that convergence is unaffected by the order of updating im-
plies that the algorithm is tolerant to out-of-order memory updates and beatigs, as long as each
individual update of a floating-point number is atomic.

The following two subsections propose two applications of Theorem 5.2i8ttmducing two

distinct algorithms, one serial, one parallel.

5.3.1 In-Place Label Propagation

The idea behind in-place label propagation (Algorithm 3) is to do a classiéxnmatdtiplication
(just as in the original iteration formula), but instead of computing a new mgtfbom £, simply

reassign each element backftas soon as it is computed.

114

Algorithm 3: In-Place Label Propagation

Input: LabelsY; similarity matrixw € R with w,; = wj; > 0

Vi,j € {1,...,t 4+ u}; tolerancer > 0.
Output: Matrix £y € [0, 1]”‘ containing unnormalized probability distributions over labels.
1w; —0Vie{l,...,t +u};

Pij — sl Vi, j €{l,...,t +u}; I initialize p

, w
k=1

3 (YL)I’OW@' — (Sg(Yi) Vie {1, - ,l};

4 fy «— 0;

5 repeat
6 fy « fu;

7 forie (1,...,u) do

8 for j € ((1,...,¢) do

. (fu)ij < (Puu) ik (fu)g; + (PuYi)y;
k=1

10 end

11 end

until 7> max max (fy—1).. ;
12 je(l,..6y iefl,...u} (U)’LJ

Each epoch (i.e., a full pass through the outermegeat loop) first stores a copy dfy in £
and then spansy; one element at a time. Each innermost loop iteration updates one elenfgnt in
Algorithm 3 is similar to Algorithm 1 (with the matrix operation made explicit element-wiséh
one crucial difference. In Algorithm 1, a new estimate fgrwas computedn the sideto then
replacefy for the next epoch. Algorithm 3, in contrast, computes new valuesifare computeéh
placeand available immediately for subsequent computations within the same epoexafwple,
the better estimate fafy values at row 1 are used to compute values at row 2. By the end of the
epoch, updates in row benefit of cumulative updates in all other rows. In contrast, at the end of
an epoch of Algorithm 1 still are updated with values computed in the previaghef his makes

Algorithm 3 converge faster than Algorithm 1, while still correct becadseneorem 5.2.3.

115

In-place updates put the termination condition under scrutiny. It wouléapihat computing
the maximum difference between elementsgandfy; would be an insufficient condition because
it could terminate the algorithm too early due to a subtle effect. Updates commitlgdreane
epoch are available for immediate use; therefore, later rows benefittef pproximations than
earlier rows. Conversely, at the end of any epoch, it is possible thaeels in the first row are at
a much larger error than elements in the last row. For example, considéh¢hapdate made to
some columre in the first row,(fy),,. was deemed correct. But after that, in the worst cégg,,.,
(fu)3er ---» (fu),. also got updated, each within the maximum tolerance as well. Each of these
updates takéfy), . further away from meeting the harmonic condition, however the algorithm may
be “fooled” into considerindfy),,. correct and terminate early with a large error at that position.
The following theorem shows that with its termination condition, Algorithm 3 daespute the

correct solution within tolerance.
Theorem 5.3.1.Algorithm 3 terminates and computes the harmonic functfwithin tolerancer.

Proof. Termination results as a consequence of Theorem 5.2.3. The upddtasnegerr by Algo-
rithm 3 converge to the harmonic function, and after sufficiently many stepslifferencety — £
drops below any constant value.

To prove correctness, we are interested in the statg after the last iteration, and particularly
the way each element is influenced by elements changed after it. (If themneonafluence, thefy
would satisfy the charge.) Each elemefy),; is affected by changes t@v) ;1) (fv)(i42)j0 -+
(fU)uj' All changes are positive by the monotonicity theorem. But there is onediffic-even
if (fu);; — (fu);j is small indicating a small distance from the solution, that difference could be
increased by subsequent changes to the lower rows. We need to cahmpuleviation from the

harmonic condition. The harmonic value fd),; at the end of the epoch is

u

hij =Y (Puu)(£u)g; + (PuLYL); (5.8)
k=1

The actual value computed f(qu)ij during the epoch is

(fU)ij = Z (PUU)ik(fU)kj + Z (PUU)ik:(f{J)kj + (PULYL)ij (5.9)
k=1 k=i+1

116

form that clarifies that some updates were done with the old values copi§chimd some updates

were done with already-updated values. To compute hO\Mfagj is from the harmonic condition

at the end of the epoch, we take the differehge— (fy),;, obtaining
hij — (fU)ij = Z (PUU)ik(fU - f{l)kj (5.10)
k=i+1
< fu — £4)k; Puy); 5.11
< ke{gi}f”u}(v — o)k k_z (Puu) i1 (5.11)
—=i+1
< fu — £4)k; 5.12
< ke{ﬁi}ﬂu}(v — fy)kj (5.12)
< fu — £4)k; 5.13
< keﬁl?’fu}(v — fy)k; (5.13)
< max max (fy— fy)k; (5.14)

T je{l,.. 0} ke{l,...u}
The last form is exactly the termination condition, so when the algorithm stdpsements are

within 7 of the harmonic condition. O

The fact that only the maximum df; — £, is needed allows us to compute the solution without
storing£y; at all, only the running maximum. This leads us to Algorithm 4, which does nainet|;
anymore. (Als@ can be easily computed as an in-place replacementiywdetail we left out of
Algorithm 4.) Such an implementation is important in environments where extra mexthacgtion
is either not desirable or not possible. Also, on many contemporary astuiriés, a smaller working
set often translates in faster speeds for comparable computational lbzs]. Wwhen we scale to
multiple processors in the next section, it will be a notable advantage tHapeacessor does not
need extra private memory.

Our practical experiments use Algorithm 4 as the basis for implementation.

5.3.2 Multicore Label Propagation

The most interesting practical consequence of Theorem 5.2.3 is thaplalpelgation can be paral-
lelized easily and with low overhead on today’s processing architectures.

Classic label propagation can be easily parallelized to run on one poodes®ach of the/
labels. This is because computations of different columrfy iare independent from one another

(the optional row-normalization must only be done at the end of conveeyemhis, however, is not

117

Algorithm 4 : Memory-Economic In-Place Label Propagation

Input : Labelsy; similarity matrix € R{""*) with w;; = w;; > 0

Vi, je€{1,...,t + u}; tolerancer > 0.
Output: Matrix £y € [0, 1}““ containing unnormalized probability distributions over labels.
1w; —O0Vie{l,...,t +u};

pij — ol Wi je{l,...,t +u}; /I initialize p

. w
k=1

3 (Yo)rowi < Oc(yi) Vie {1,...,t};

4fU<—O;

5 repeat

6 Tm = 0;

7 forie (1,...,u) do

8 for j € (1,...,¢) do

9 a <— (fU)'LJ’
u

(fu)i; — }E:(PUU%k(fU)kj4‘(PULYL)UJ

10 el

11 Tm — max(Tm, (fU)ij —a);
12 end

13 end

14 until 7 > 7, ;

true scalability; most application have a small fixeahd a large variable, so scaling up should be
performed by finding a way to divide work acrass

Theorem 5.2.3 and Algorithm 4 do allow scalability owerlf a system hag processors, each
processor computes in-plac{e rows of a shared matrixy. The crucial aspect that pertains to
scalability is that writes to elements 6§, although they do engender race conditions (because
a value written by one process is read by all others), do not need torohreyized at all per
Theorem 5.2.3 if we assume that each write is atomic. Also, each processts data written

by others and writes data never written by others, so there are no wetenafte conflicts that

118

could cause wasted computation. But an issue of wasted computation still édtsisugh newly
computed values are never lost (there is guaranteed overall prpgresgputation power is spent

on recomputing the same value, assuming there are no updates to a partitutar.c

With regard to atomicity of writes, on a 32-bit system, a parallel implementatiorssitates
that each floating-point value is written and read atomically. A single-precl&BE 754 value is
written atomically, whereas on a 64-bit system, a double-precision IEEEs7&rtten atomically.
(Most 32-bit systems allow atomic 64-bit writes through special processtuctions.) A 32-bit
system that needs to perform 64-bit computations can combine Algorithm 4Algthithm 1 to
perform computations on the side (in private memory). A rendez-vousanexh at the end of
each epoch synchronizes over all processors and commits batchrggshia bursts, thus factoring
interlocking costs over many writes. A different approach to 64-bit cdatjmn on 32-bit machines
is to first run a parallel algorithm on 32-bit floating point numbers. Thaltes this algorithm can
be converted to 64-bit numbers and used as the initial values for thes=sain of the algorithm.
Since the 32-bit result is a close approximation of the harmonic function,dtia gart of the

algorithm will converge rapidly.

Ironically, although unsynchronized writes are beneficial, they alse tais problem of ter-
mination detection: since all processes are independent, there is nanediord and therefore no
chance to tell the processors when to stop. Therefore, a minimum amocorofination must be
added to stop when the harmonic function has been computed within a giveantsde Each epoch,
every process must check on a shared “continue” Boolean variablefinans the process whether
it should continue or terminate. A separate process runs independerlyadifiers, just check-
ing whetherfy satisfies the harmonic property within toleranceOnce that happens, the separate
process sets the “continue” shared variable to false, and all threauli®ade. The monotonicity
theorem ensures that any extra work done afgdras passed the harmonic test with toleranoel|
only improve the solution.

An important advantage of a parallel application of Algorithm 3 manifests itselfetaxed
memory model$ which, at the time of this writing, dominate the multiprocessor desktop comput-

ing market. In a relaxed memory model, updates to shared memory performed pyocessor may

INot to be confused with the method of relaxations; the two terms are urdtelate

119

not be seen by other processors in the same order as they are writtenpénant consequence of
Theorem 5.2.3 is that out-of-order reads and writes do not affegecgence. Also, on certain mul-
tiprocessor machines, special instructions must be issued at leastroapech to make sure data
is (@) committed to shared memory, and (b) re-loaded from shared memosmwBte, updates or
some of the updates may only be written to and/or read from local, proegseate cache memory.
If such instructions are only executed once per epoch, the overheaudad by synchronization is
negligible. Although this chapter does not aim at devising machine-spegédtams, we do want
to convey that Algorithm 3 is directly convertible into scalable parallel implememiztid label

propagation on a variety of processor architectures.

5.4 Reducing the Number of Labeled Nodes in the Graph

Existing work [65] reduces the number of nodes in the graph by usindpsesgelection method,
at the expense of precision. The algorithm proposed below reducesithieer of labeled nodes
from t to ¢ without impacting in any way the precision of the classification. Concrete apiolics
usually have much fewer distinct labels (e.g., a handful up to a few thdusizgan labeled samples
(thousands to billions), so the reduction—often on the scale of many atie@gnitude—is highly
beneficial. Itis always safe to assume that /; if that is not the case, then there exist out-of-sample
labels. Given that they are never hypothesized, the out-of-sample tarelse simply eliminated
during a preprocessing step.

The intuition behind the reduction process is that labeled nodes havingrtieelabel can be

“collapsed” together because their identity does not matter.

Lemma 5.4.1. Consider the matriceB € [0, 1]**9* &+ andf e [0, 1]¢T9* initialized for the
label propagation algorithm. Define the matriX(a, b) € [0, 1]~ D> =1 ‘wherel < ¢ <
b < t, obtained fronP by adding thez™ column to theh™ column, followed by the elimination of

the ™ row anda™ column:

Pi,1 - Pl,a—1 Pl,a+l - PlatP1b -+ Piln
_ Pa:.l,l <+ Pa—1,a—1 Pa—1,a+1 --- Pafl,a‘i'pa—l,b <+ Pa—1,n
R(a7 b) - Pa+1,1 --- Pa+1,a—1 Pa+1,a4+1 --- Pa+1,a+Pa+1,b --- Pa+1,n (515)

Pn,1 -+ Pn,a—1 Pn,a4+1 - Pn,atPn.b -« Pn,n

120

Also define the matriy(a) obtained by eliminating the'" row of £:

fi1q1 fio f1r
fa-11 fa-n2 - fa-1ye
gla) = |Fer ey (a-1) (5.16)
farnr farn2 - farye
| fetul fetur |

If the rowsa andb of £ are identical, then usin@(a, b) andg(a) for the label propagation algorithm
yields the same label predictions for the unlabeled data (the bait@ws ofg(a), which we denote

asg(a)y) as the predictionsy obtained by usin® andf.

Proof. Consider the iterative stef) < Pf. The element;; is:

ttu t+u
£y = Zpkifij = Prafaj + Profo; + Z Prifij (5.17)
. i{a.b}
But f,; = f;; by the hypothesis, therefore:
t+u
£1.; = (Pka + Peo)foj + > Prifij (5.18)
it {a)
It can be easily verified by inspection that:
/ .

f;j: g (a)k; ifae{l,...,k} el 0 5.19)

g (a)k-1); Haec{k+1,...,t+u}
whereg’(a) = R(a,b) - g(a). Given thata < t (by the hypothesis), it follows tha& and¢’(a)
contain the same values in their bottam 1 rows. (The top rows are clamped and do not participate
in the result.) So one step preserves the intermediate result.
By induction over the steps of the iteration, it follows that both iterations agevand after

convergenceR(a, b) andg(a) will yield identical label predictions a& andf. O

This means that the graph for Zhu'’s label propagation can be redycedeblabeled sample
whenever there are two labeled samples having he same label. Applyingdtitioa process

iteratively, we obtain the following theorem.

121

Theorem 5.4.2(Graph Reduction)Consider a graph with labeled points (accounting f@diabels)

andu unlabeled points, as constructed for the label propagation algorithm. If bitlled nodes for
each given label are collapsed together and the resulting parallel edgesrearly superposed
(reduced to one edge by summing their weights), then the resulting griipt vabeled nodes

yields the same label predictions for the unlabeled data as the original graph

Proof. The preconditions of Lemma 5.4.1 are respected as long as there aret avieéabeled
nodes with the same label. This means we can apply one reduction step untillabgled node

remain. During the reduction, by Lemma 5.4.1, the label propagation reselifseserved. O

After reduction has been effected, a reduced matrix, € [0, 1]¢*%*(+%) and a reduced label
matrix gmin € [0, 1](““)“, an important reduction in size. The process of reduction requires only
O (t +u(t +u — ¢)) additions and does not require additional memory. The required memory for

an exact implementation is reduced fr@((u + t)*) to O ((u + ¢)?).
5.5 Graph Reduction for Structured Inputs and Outputs

We have shown in Theorem 5.4.2 that all training vertices carrying the sdrelectan be collapsed
into one if the resulting parallel edges are summed. We apply that result taaph built for
learning with structured inputs and outputs introduced in Chapter 4, Defiditib@. In that graph,
all source vertices can be collapsed into one source vertex, and aNesitikes can be similarly
collapsed into one sink vertex. The resulting graph has only one sondcere sink, as per the
definition below, which is a refinement of Definition 4.2.2 where graph réalubas been implicitly

carried.

Definition 5.5.1 (Graph-Based Formulation of Structured Learning with Only Positive Trgin
Samples with Graph Reductionfonsider a structured learning problem defined by featkires
(x1,...,%e4u) C A, training labelsy = ((y1,...,y:) < Y, similarity functiono : (X x
V) x (¥ x YY) — [0,1], and hypothesis generator functign: X — F()’). A similarity graph
for the structured learning problem is an undirected weighted graph vativadued vertex labels,

constructed as follows:

* add one distinguished vertex with label 1;

122

 add one distinguished vertex with label O;

- add one vertexv;; (with initial label 0) for each hypothesis(x(x;));,, j €

(1,...,card(x(x;)))), of each test samplec ((t +1,...,t +u));

» for each vertex;;, define one edge linking it to, and one linking it ta_, with the respective
weights

t

wijr = o({xi, (x(xi);) s =k, y1)) (5.20)
k=1

wij_ == C’ij—wij_,_ (521)

« for each pair of vertices;; andvy;, define an edge linking them with weight

wigt = o ((=i, (x(xi));)) 5 (s (X(x0))10)) (5.22)

By Theorem 5.4.2, this graph computes the same scores as the much lageirgDefini-
tion 4.2.2, a result that may seem counterintuitive. The ability to collapse togedite sentences
stems from all train sentences having the same score, therefore their idk@#ynot matter: the
identity of similar training sentences is not relevant; what matters for the assigrof scores to
the test hypotheses is their global similarity with the training set, or, more phediseir average
similarity with their entire neighborhood of labeled points considered as a wAaeaph could be
set up such that individual training sentences, or categories thareafjeaningful to the approach

(e.g. when confidence information is associated with each training sample).
5.6 Fast Graph Construction in Jensen-Shannon Space

We now turn our attention to computing distances in the real-valued multidimensipaeds dis-
cussed in Chapter 3. Recall that in many HLT applications, the inputs are afroategorical,
Boolean, and real-valued features. The data-driven constructimess with two passes presented
in § 3.3 uses a first-pass classifier to convert the often heterogengmuideatures to probability
distributions. The main merit of this setup is that it provides the graph-bagedtam with features

that are amenable to good similarity definitions. Operating directly on the origatatogeneous

123

features using a generic distance measure such as Euclidean (Eq.Go3)ree (Eq. 3.5) is arguably
suboptimal. Our experiments in Chapter 3 have shown that, indeed, usimgistances with label
propagation yields inferior results in terms of accuracy when comparee tovtitpass system.

Let us recap how similarities are computed in our two-pass system. An afahapproach that
we also adopted is to define similarity as a Gaussian kernel over a distanseraaeaX x X — R,
(recall 8 3.2 and Eq. 3.2):

a0 : X xX—=(0,1] o0a(x,x%j) =exp [—d(XZQXj)Z] (5.23)

Computationally, this reformulates computing similarities into computing distances plus a
stant per-pair amount of work. Also, the equation reveals that the similari#gune is more fine-
grained for points close in space than for widely separated points; thoticfore " is rapidly
decreasing, for exampte, (x;,x;) ~ 107" for d(x;, x;) = 4a.

Characterizing distances between probability distributions and the topolbgiedistances in-
duce over distributions is a topic that has recently received increasimgiattérom not only ma-

chine learning researchers, but also statisticians. Usually distanceseimatigtributions are derived

from probabilitydivergencesTo clarify a terminological detail that may sometimes cause confusion

due to the different uses in literature:

« A divergenceis a relation (usually defined over probability distributions) that indicates to

what extent one sample “diverges” from another. Often, one of thles is considered the

reference. As such, divergence relations are not necessarily dyim@emmutative).

« A metricis a relation with the classic metric properties, i.e. (a) it is positive, (b) it is aelyp
for identical arguments, (c) it is symmetric, and (d) it satisfies the triangleualidyg Refer

to 8 3.4 on page 30 for formal definitions of these properties.

« A distances a relation that measures the dissimilarity of elements in a set. It must (only) be

positive and symmetric. Literature often uses the terms “distance” and “mitt&rthange-
ably because distances of choice are often actually metrics, but sirmgtlyecon-metric
distances have received increasing attention [2], this work carefutingisshes between the

two.

124

As described in detail in § 3.4, there exist several divergence meadefieed over probability
distributions, of which Jensen-Shannon divergence (which is a symegttizd bounded Kullback-
Leibler divergence) was the one that was most successful in ourieds (§ 3.6, § 3.7) and will
be the main focus of our examples. We repeat here the definitions of Kkdll&ibler divergence

(Eq. 3.14) and Jensen-Shannon divergence (Eq. 3.18) for ciemae:

¢
dL(z,7) =) zjlog .
i=1 (4]

N 2l + 7y , 2+ 2
dys(z,2') = 3 dkL Z,— + dkL Z, (5.25)

Jensen-Shannon divergence has been used in a variety of statiséilysisiand machine learn-

(5.24)

2l
/

ing tasks, such as testing the goodness-of-fit of point estimations [tEB8hnalysis of DNA se-
guences [22, 191, 23], and image edge detection [94].

We will loosely refer to the space formed by probability distributions using&erShannon
divergence for measuring distances as “Jensen-Shannon spé&ark looking at finding the most
similar items according to the similarity in Eqg. 5.23 that operates on top of the J&hsamon
divergencel,s. Given thato,, is monotonically decreasing, finding the most similar samples is the

same as finding the ones at the smaltgstfrom one another.

5.6.1 Nearest Neighbor Searching

A brute-force approach to creating the unlabeled-to-unlabeled edggisiX Pyy introduced in

Chapter 2) would entail computing the similarities over the cross-produiet i, ..., xt1u) X

u(u—1)
2

{(®Ket1,-- -, Xeqn) , resulting in evaluations of the similarity function. In addition, creat-
ing Py entailsu - t similarity evaluations. For large valuesw{and/ort), exhaustive computation
of all similarities is infeasible. Therefore, it is common to only includetexges with the largest
similarity values for each node in the graph, and to use fast methods fonditice & nearest neigh-
bors. Edges with low weights can be ignored because they encode dbakplity paths in the
random walk. This is an instance of the nearest-neighbors problem.

Searching for the nearest neighbors has many applications in a variptpldeéms, such as
information retrieval [194], storing and querying media databases [Z)3data mining [21], and

of course machine learning at large [101, 104].

125

For dimensionalityd < 2 the problem of scalable nearest neighbors has been solved: There
are known methods that complete a queryJifilogn) with preprocessing takin@(d - n) space
andO(d - nlogn) time. In one-dimensional spaces the approach is the well-known binaighsea
on a sorted array, or constructing and using a search tree. In two-sionahspaces the optimal
algorithms are using Voronoi diagrams [10].

Voronoi introduced the eponymous diagram [10] in 1907—1908. ANoirdiagram is a decom-
position of a metric spac&/ containing points of a sef in convex disjoint cells. Each point in
s € S is associated with exactly one cell containing all pointdincloser tos than to any other
point in S. Consequently, cell boundaries (situated on perpendicular biseqpergignes) are at
equal distance from two or more points $) and the disjoint union of all cells cover the entire
spaceM . Once a Voronoi diagram is built, finding the nearest neighbor of a gieént is a matter
of finding the cell to which the point belongs. Voronoi diagrams have besgarched mostly in
two [34, 227] or three [80] dimensions; in higher-dimensional spdces3, storage requirements
@(n%) make the approach impractical.

In 1967 Cover and Hart formally defined nearest-neighbor decisierfou classification [55].
This insight, combined with an increased interest in the theory and practitectiine learning,
has prompted further research in the area, particularly in spaces wighnargber of dimensions.

For higher-dimensional spaces ¢ 2) there is no known solution that is generally satisfactory.
Kleinberg initiated the idea of providing theoretical bounds by putting restnistan the distance
measure [121]. Karger and Ruhl defined the all-important expansiemfa sample set [114].

Approaches to nearest neighbor algorithms fall in several categmi@sding locality-sensitive
hashing [91], walk-based techniques (such as the approximating eliminsgergh algorithm
a.k.a. AESA [222, 160], Orchard’s algorithm [177], Shapiro’s ailgpon [199]), and a large hum-
ber of tree-based techniques. The latter algorithms organize data in drtreire and search
using a technique derived from the branch-and-bound genertdgtral he goal is to organize the
space such that large portions of it do not need to be searched. Theyapesar of these are
kd-trees [19, 17, 18], metric trees [49], and Cover Trees [24].s&heee structures requit@(n)
storage space and practically require in-core presence of the entifedrdata set (for building the
node-based trees). The build and query complexity of trees incrgaiséynaith c e.9.0(c% log n)

andO(c'? log n) for cover trees.

126

Recent empirical comparisons against data obeying a variety of distribstiggest that these
techniques generally yield little or negative improvement over kd-trees inéaddjuery time [117].
We therefore chose kd-trees as our nearest-neighbors methodioé ¢lmplemented as an opti-
mized library in the D programming language), but we emphasize that angsteeighbor tech-
nique could be chosen for Jensen-Shannon space. In particutam, that Jensen-Shannon diver-
gence is the square of a metric (the transmission metric [77, 37]), seatekimgques that make
use of the triangle inequality (e.g. AESA, metric trees or cover trees) casdikas long as/a
is used for searching insteaddf. (The end result is not affected because the square root function
is monotonically increasing.) Our focus on kd-trees is motivated not only diy gilood empirical
performance and lasting success, but also by their direct applicabilithsedeShannon spaces, as

discussed below.

5.6.2 Using kd-trees in Jensen-Shannon Space

K-Dimensional Trees (kd-trees) have been proposed by Bentley [19)arelfirst analyzed theo-
retically by Friedman, Bentley, and Finkel [85, 18, 16]. In spite of theg,dgl-trees are a widely
used and investigated data structure for performing fast nearestoeiggarches. We will first de-
scribe kd-trees as originally proposed and as usually introduced in tredlite{166], after which

we will follow with considerations specific to using kd-trees with the JendeamBon divergence.

A kd-tree built over a space embeddedifi is a binary tree that stores, at each neda finite
collection of pointsZ, = ((zu1,...,2,7,)) € RX*I2vl Inner nodes also storecatting dimension
as anumbed, € {1,..., K}, acutting valuec, € R, and left and right children nodes which we
denote adeft(v) and right(v). (Slight variations in the exact information stored are possible, as
long as the fundamental information can be accessed efficiently.) Thete@mvariants governing

a kd-tree:

1. If vis the root node, it covers the entire point set:

Z, =7 (5.26)

127

2. If vis a non-leaf node:

Zier(v) Y Zright(v) = Zv (5.27)
Ziept(v) N Zright(v) =0 (5.28)
24, < € VZE Ziepn) (5.29)
24, > Cv V2 € Zrighi(w) (5.30)

Note how samples witl,,; = ¢, may fall in either the left or the right subtree. This simplifies
certain tree building algorithms and their associated data structures, assgidd¢n the next section.
Also, this ambiguity predicts that kd-trees have problems organizing highsteckd point sets:
if many points have the same coordinate values, kd-tree structuring is uoaddiel information
helping the search. (Restricting Eqg. 5.29 or Eq. 5.30 to use strict inequalitidwnot improve on
this issue for reasons that will be clarified in § 5.6.2.2.)

Discrimination by comparison of dimensidp against value,, effectively introduces a cutting
hyperplane orthogonal to mé* Cartesian axis at point distangefrom the origin. Points are placed
in the left or right sub-tree depending on the side of the hyperplane teegna (Points situated on
the hyperplane may be placed in either subtree, but never both.) If we ienthgircomplete set
as bounded by the smallest hyperrectangle that includes alisgboints, a kd-tree organizes that
hyperrectangle into smaller disjoint hyperrectangles.

Save for observing the invariants in Eq. 5.26-5.30, kd-tree building igigws have discretion
regarding the strategy of choosing the cutting dimengjoand the cutting value,. We will discuss

some popular tree building strategies below.

5.6.2.1 Building kd-trees

Implicit kd-trees The simplest building strategy is:

» Choosel, in a round robin fashion going down the tree: dse= 1+ depth(v) mod K for
each node, i.e. the root splits at dimension 1, the root’s children split at diore, and so

forth, resetting the counter whenever the depth reaches a multiple of

128

» Choose:, to be the median of the projections@f on dimensiond,,. For example, ifl, = 5,

c, is the median of value@.,1) s}, - - - ; (Zy)2,|)5)-

Choosing the median as pivot always leads to a balanced tree of3iZ8) and depth
O(log |Z|) because each node has a roughly equal number of left and righteshildtowever,
balanced trees do not guarantee fast searching because, unlikeary tiges organizing one-
dimensional number sets, the tree does not guarantee that searclvags pioceed in only one
branch.

One advantage of the simplest strategy is that it can organize an arraints in-place, without
requiring any additional storage. Such kd-trees in which the tree stelistimplied by the naviga-
tion algorithm are calledmplicit kd-treesand are mainly used in three-dimensional modeling and
virtual reality applications [224, 73]. The implicit structure is that for anyegiarray, the root node
covers the entire array and the left and right children cover each aheftthe array. Applying
this rule recursively through the trivial array of size 1 induces the impliditrke. Algorithm 5

organizes an array into an implicit kd-tree.

Algorithm 5: IMPLICITKDTREE: Organizes an array into an implicit kd-tree.
Input: Array Z = ((z1,...,2z)) € R¥*IZ; splitting dimensiont € {1,.. ., K} (initial

value arbitrary, e.g. 1).

Output: Z is organized as an implicit kd-tree.
1 if |Z] > 1then
o [5]
3 partition(Z, s, d);
4 d—1+d mod K;
5 IMPLICITKDTREE(Z [1..5] , d);
6 IMPLICITKDTREE(Z [s + 1..|Z]] , d);

7 end

The algorithm avails itself of the procedupertition which is an array partitioning algorithm,

for example the classic “Median of Medians” algorithm by Blum et al. [30joltruns in expected

129

O(|Z]) time. This bound leads to a totél(| Z| - log | Z|) expected run time forMpPLICITKDTREE
(taking into account that the recursion depth is alwé}($og|Z|). The partitioning criterion is
ordering comparison of projections on dimensibn

Implicit kd-trees are attractive in organizing large data sets with featuresgeneously spread
across all dimensions. If heavy clustering across specific dimensiauasspémplicit kd-trees are
not very helpful because they partition data in a manner that does ndtiakiata characteristics
into account. Partial parallelization of the construction process is possib#ibe after partitioning
the two sub-arrays are entirely isolated from each other so there is ringshantention between

them.

Splitting Across the Largest-Spread Dimension An improvement to the strategy used by im-
plicit kd-trees is to not choose the cutting dimension in a round-robin fashigrinstead use the
dimension with the largest spread. This rule was proposed with the origiraék definition. A
small amount of additional storage is needed in the form of an implicit tree (rray)aof split-
ting dimensions. The complexity of the building process remains the same. Tdistitubuilds

a balanced tree, but the hyperrectangles that divide the space malyitibarir elongated. Such
elongated shapes are adverse to the searching process becauseadrstiuase two points may be
deemed close (by virtue of being in the same box), yet may be arbitrarilydiar €ach other by

being situated at opposite ends of an elongated box.

Splitting Across the Midpoint A technique that always constructs hyperrectangles with small
aspect ratios is to split across the midpoint of the longest side. This appitoawvever, may result
in empty cells, i.e. hyperrectangles that contain no points at all. Therefere ifino bound on the

depth of the tree or the number of nodes in it.

Hybrid Strategies Several strategies (including, but not limited to, the ones enumerated)above
may be mixed and matched. For example, the popular Approximate NearesbNe{@NN) li-
brary [8] defines construction strategies that e.g. attempt first to splisathe midpoint and then
move the midpoint such that no empty cells result. The best strategy to chaesehisituation is,

of course, dependent on the nature of the data set at hand.

130

5.6.2.2 Searching a kd-tree

The search process—as described by Friedman, Bentley, and RSkeHijrst descends the tree
recursively searching the point in the same (and smallest) bounding e @sery poing, € RE.

If the bounding boxes as created by the tree building algorithm are ralalgamall in volume and
aspect ratio, then a good approximation of the nearest neighbor hagyafreen found. Keeping that
point as a running candidate (with the corresponding candidate distane,, z.) = . € R,),

the algorithm climbs back the tree as it unwinds recursion. At each node dijrfiltiee intersection
between the hypersphere centeregl.aif radiusr. and the other (as of yet unvisited) hyperrectangle
of that node is non-null, the other child of the current node is also sediota similar manner. The

candidatez,. is replaced whenever a better candidate is found.

Two aspects are key to a good search performance. One is findinglacgondidate in the de-
scent phase with a small distange A good candidate eliminates the need for searching most or all
unvisited subtrees in the unwinding phase, and leads to completing the sekrgarithmic time.
This aspect is dependent on the statistics of the data, the position of thepmirrrelative to the
point set, and the kd-tree build process. The other important aspeciusrenthat the intersec-
tion between the hypersphere centered abf radiusr. and a hyperplane is cheaply computable.
Achieving this goal depends on the characteristics of the distance funcstieah

Algorithm 6 (KDSEARCH) shows a definition of the search algorithm. It uses two subrou-
tines that we will discuss in detail in short order. In brieQ BNDSOVERLAPBALL (R, z,) checks
whether the rectangl& and the hypersphere (ball) centeredziwith radiusr have a non-null in-
tersection. Second, the functioroBNDSENCLOSEBALL (R, z, r) checks whether the hypersphere
centered ire with radiusr is containedentirelywithin the hyperrectangl&.? The latter function is
an optimization that is not present in some tutorial introductions to kd-tre€$, i@ was proposed
alongside with the algorithm proposed by Friedman, Bentley, and Finkgl T85put Algorithm 6
in relation with that algorithm, the original definition used an augmented langosiyactiondone
to terminate recursion immediately; in contrast, Algorithm 6 adds a Boolean w&iuihe returned

tuple and checks it after each recursive call. This makes the algorithfiritide marginally more

2The subroutine was originally called #&L-WITHIN-BouNDS’ [85], but we chose “BUNDSENCLOSEBALL”
because it has the same natural parameter order@sNBSOVERLAPBALL .

131

complicated but also closer to a direct implementation.

Before discussing the subroutine® BNDSOVERLAPBALL and BOUNDSENCLOSEBALL, let

us note several refinements and improvements that can be effected iitlitg6r These include:

 Using bucketsinstead of storing exactly one point in each Idaf; 1 points can be stored,
thus making each leaf a bucket. Inside a bucket, brute-force searshds Bucketing may

save on tree allocation and navigation.

 Using simplified distancesA simple observation is that instead of the distance function, any
monotonically-increasing function of the distance is allowed because it witl i same
nearest neighbors. This possibility can be used to reduce computateedd.nFor exam-
ple, instead of computing Euclidean distance, the algorithm can operateiaredglistances
throughout; generalizing to Minkowski distances of orgethe algorithm can operate on

distances raised to the power

* Incremental distance calculatiomrya and Mount [9] have proposed an ingenious technique
to save computation when calculating the distance between the query pothednperrect-
anglesRk’ andR”. Using their technique makes the complexity ad BNDSOVERLAPBALL
constant, whereas the canonical implementation of the function k&S time. However,
their improvement only applies to Minkowski distances, so it is not of intemesensen-

Shannon divergence.

» Searching fork nearest neighborsThe algorithm can be readily adapted to find not only
the closest neighbor, but thikenearest neighbors. This can be easily done by manipulating a
priority list (e.g. binary heap) of tuples in lieu of the tugte., r.). Whenever Algorithm 6
compares a potential replacement against the current best candidatestibe changed to
compare against the top of the heap (the worst match of thesbraatches). If the potential
replacement is better, it will replace the worst match in the heap. The comptexibe

function grows by a factor aP(log k), which is usually negligible.

132

5.6.2.3 Defining Core Routines. Distance Requirements

BOUNDSENCLOSEBALL and BouNDSOVERLAPBALL form the core of the algorithm and also
impose specific requirements on the distance measure. This section disthiesserequirements
and verifies thatl ;5 satisfies them.

An arbitrary distance function would lead to an arbitrarily complex definitioritie two prim-
itives, leading to failure of the entire approach. In their paper analyzihggdes [85], Friedman,
Bentley, and Finkel remarked that the distance measure does not needtmétric, but instead
must obey a different set of requirements, also discussed by Reis§1&83.

The entire kd-tree method relies on the assumption that the fundfiare’) grows mono-
tonously with‘zm — zm in any dimensiont. A simplifying step is to restrict analysis to distance

functions of the form:

d(z,2) = D (i d; (Zm,z/[i])> (5.31)

di K2 - K (5.32)
D:K —R (5.33)
K,K' CR (5.34)

Although imposing this form tal seems rather restrictive, most distance functions naturally

come in this form. For example, for Minkowski distances of orgedefined asL(z,z’) =

F 1/p
(Z z;) — z’m p) (also refer to § 3.2.1 and Eq. 3.3), we haWéz) = '/7 andd;(z,2') =
=1

}x - x/\p. However, the cosine distance function (8§ 3.2.1, Eq. 3.5) notably ddd# tigs mold.
(However, cosine distance being the square of a metric, other algorittumsisumetric trees can be
used in conjunction with it.)

Given the form in Eq. 5.31, Friedman et al. [85] defined the following id&ins the distance

function’s components in order to be usable with kd-trees:

1. All of d; are symmetric:

di(z,2") = d;i(2', 2) (5.35)

133

2. The partial applicationd;|, ., : K — R, d;| =z, (¥) = di(=, 29) have exactly one nonneg-

ative local minimum at = z for all ¢ € K:

zg <z <2’ = di(z,z) < di(zo,2") (5.36)

zo > x > 2’ = di(xo, z) > di(2o,2") (5.37)

3. The distance between identical points is zero:

di(z,z) =0 VreK (5.38)

(The original paper analyzing the distance requirements for kd-tre&€siégman, Bentley,
and Finkel [85] does not mention the requirement in Eqg. 5.38. Howearyelguirement is
necessary, as clarified by the two theorems below. The omission might bageugnoticed
because virtually all distance measures between identical points haveoreponents in all

dimensions.)

4. The functionD is monotonically increasing:

r <12’ = D(z) < D) (5.39)

We now define BUNDSENCLOSEBALL and BOUNDSOVERLAPBALL to take advantage of
these restrictions. The following two algorithm definitions and their assoc@tedctness proofs

are similar to those introduced by Bentley et al. [85].

BOUNDSENCLOSEBALL The invocation BUNDSENCLOSEBALL (R, z,r) (Algorithm 7) re-
turnstrue if the hyperrectangle? engulfs completely and strictly (no tangent points) the hyper-
sphere centered at of radiusr, andfalse otherwise. The function carries the task by simply
evaluating in each dimension whether the extrema of the hypersphere t&Etleof the extrema
of the hyperrectangle. The hyperrectangle is represented as two pgbmisorner with the lowest
coordinates, denoted @™, and the corner with the highest coordinates, denote"#$. The
comparisons are non-strict, i.e. a hypersphere tangent to a face ofghedctangle is conserva-
tively assumed to not be enclosed. This is because there might be points tighintersection that

belong to a different branch of the kd-tree.

134

Whenever it is computationally more advantageous to work with the inverge mfequalities

may be expressed and computed in term®ot, for exampled; <z[i], ﬁin) < D7L(r).

Theorem 5.6.1(Friedman et al. [85]) BOUNDSENCLOSEBALL is correct under the assumptions

in Egs. 5.31-5.39.

Proof. Assume that the function ®UNDSENCLOSEBALL returnstrue but there is still a poing*

inside of the hypersphere but outside the bounds:
K
Y di (zm, zf;.]) < D) (5.40)
=1

By definition of R, z* is outside of it if for at least one dimensig’nzfﬂ < R[} or Rbf“X <
zf‘j] Given (by the precondition) thdﬁmln < zp;) < ﬁa", by Eqg. 5.37, either (respective to
the two cases); (zy;, (z*)};)) > d; (zm, o) ord; (z[j],z[j]> > d; (z[j],RE?fX). Given that
BOUNDSENCLOSEBALL returnstrue, d; (zm, E.‘]m) > D~ !(r) andd; (z[j],RE.‘fX> > D7(r).
Sod; (z(;, (z%);)) > D~Y(r), which impliesd (z,z*) > D~!(r) (as sum of nonnegative terms per
Eqg. 5.38), contradicting the hypothesis.

Conversely, assume@NDSENCLOSEBALL returnsfalse Therefore there is at least one di-
mension; satisfyingd; (zm, Rﬁ?}in> < D71(r). (The other case involvingg(’i™ is similarly han-
dled.) Let us choose the poiat with the same coordinates asxcept in dimensiori where the
coordinate |3z[j] = Rb]l That point is on the surface @t so it is not enclosed inside of it. The
distance between andz* has all terms equal to zero (Eq. 5.38) except in dimengjdeading to
the valued(z,z*) = D (dz’O (zm, (z*)m)) < r. So the point* is in the ball but not enclosed in
the hyperrectangle. O

BOUNDSOVERLAPBALL The subroutine BUNDSOVERLAPBALL (Algorithm 8) is only slight-

ly more complicated than BUNDSENCLOSEBALL . It returnstrue if and only if there is some
non-empty intersection between the hyperrectaftgnd the hypersphere centered aff radiusr.

(The original definition [85] returns the complement, trele if there is no intersection.) In spite

of the fact that the intersection itself may have a complicated shape, gettingsh®eyanswer is
simple. The point on the surface Bfclosest to the sphere is calculated. That point may be a corner,

an edge, or a face of the hyperrectangle. Regardless of the placemamtoordinate of that point

135

is easy to compute on a by-case basis. Note that although the closest pompigted using simple
inequalities, the actual distance to it is computed using the accdifatection. Comparing that
distance against the sphere’s radius yields the final result. This fumotigas the same assumptions

aboutd as BOUNDSENCLOSEBALL.

Theorem 5.6.2(Friedman et al. [85]) BOUNDSOVERLAPBALL is correct under the assumptions

in Egs. 5.31-5.39.

Proof. The proof relies on showing that the point implicitly chosen in the loop duringdngputa-
tion of s is the closest ta on the surface oR. If there was any closer point, it would have to have
at least one of the component distances smaller than that chosen in theyaopr{otonicity ofd;

in all dimensions). But BUNDSOVERLAPBALL already chooses the extremum of each coordinate

that is closest ta, so by Eq. 5.37 that choice also minimiz&sn each dimension. O]

5.6.2.4 Adapting kd-tree Search to Jensen-Shannon Space

Interestingly, although kd-trees are almost always used with distahdesved from a norm (by
definingd(z, ") = ||z — 2'||), the restrictions in Egs. 5.35-5.39 do not requite be norm-based,
which is relieving because Jensen-Shannon divergence cannasibeexpressed as the norm of a
difference® The reader interested in the norm associated wijttis encouraged to peruse Topsge’s
work [217], which shows that a norm does existdig¢ but does not have an analytic form. For our
purposes, we only need to prove tlda¢ is also suitable for use with kd-trees, for which reason we

will prove the following theorem.

Theorem 5.6.3.The functionf : [0,1] x [0,1] — R

2x 21
/ — 1 /1
flx, 2" xogix_l_x,—i-x ng+$/

(5.41)

is symmetric and has a partial applicatigi,’—,, with exactly one local minimum in= z, equal

to zero.

3However, this means we are foregoing some optimization opportunitiek,tee aforementioned incremental dis-
tance calculation [9].

136

Proof. Symmetry is immediate by renamingto =’ and vice versa; we obtain the same function.

To find minima of the partial applicatiofi,»—,, let us take its first derivative:

2z r+azg 2(x+z9)— 22 x + o 210
1=y) =1 : : — 0 - : 5.42
(Flar=ao)” = log T+ T (z +)2 0 T 0m (@o 70)? (5-42)
2z
=1 5.43
o8 T+ xo ()
The fraction n is positive and monotonically increasing {in1] and thereforé f |,/ —,)’
T Wiy}

is also monotonically increasing. The point at whigh,/—,,)’ intersects the) = 0 axis is where
2x

T+ Xo
to verify that the extremum is a minimum with valye,/_,,(zo) = 0, so the function is also

=1 = z = z(. Atthat point the function reaches its only local extremum. It is trivial

nonnegative, which concludes the proof. O

The connection between Theorem 5.6.3 and our goal is that the furfjctiescribed therein is

one term of the Jensen-Shannon divergence funetjonFor d;s, D is simply scaling the sum of
1 . :

the components bg: D(z) = g Theorem 5.6.3 proves that we can dse directly with kd-trees

and achieve correct results.
5.7 Scalable Hyperparameter Tuning for the Gaussian Kernel

The data-driven method discussed in Chapter 3 defines distances arghtsof a first-pass clas-
sifier. The resulting feature space consists of probability distributions ttaeedesired classes,
and probability divergence measures with well-understood statisticaépieg can thus be used
as distance measures. Our experiments use a neural network with sofitpax ¢rained on the
original MFCC features, as the first-pass classifier, and Jensem&@halivergence as a distance
measure.

The distancel;s is converted to a similarity measure by using a Gaussian kernel of parameter-

ized width (Eqg. 2.1):

)2

Wij = exp [_dJS(ngﬂ)} (5.44)
«

The quality of the similarity hinges on finding a good value for the hyperpaeme Choosing

the optimala is an open research question; several heuristic methods have bekeim psactice.

Zhu [238] optimizesx to yield a labeling of minimum entropy, subject to the constraint that the

137

labeling must respect the labels of the training set, and also discussesstiteebased on the Min-
dO

imum Spanning Tree (MST). The MST-based method entails chomsiﬁgg, whered' is the
smallest distance between two labeled points bearing different labels. Thisans extremely
sensitive to noise, as one or one pair of outlying samples is enough to iteltlea choice ofy
decisively. Optimizingx for minimum entropy is more robust, but carrying the optimization (by
e.g. gradient descent) for each utterance would add consideralbleeaddo the classification time.

Corpora with only low amounts of labeled data< u) make the issue of effective hyperparam-
eter training particularly difficult because there is little or no developmenttddiame parameters
against. We propose an efficient and scalable method of calibratihgt works offline (only uses
the training data) and is inspired by maximum margin techniques. As such, dlodnenjoys the
usual properties of maximum-margin techniques such as robustness tandig@od separation
capabilities.

First, we compute the average intra-class distatigg,j and inter-class distancéifier):

Z d(Xi7 Xj)

dintra = 5.45

MR card {{i, 5} € {1, .t} [i # joyi = vi) (5-49)
Z d(xi, xj)

dinter = itda (5.46)

card {{i,j} € {1,...,t}? ! Vi i}
where Ninra and Ninger are the counts of the respective terms. ldeallyya > dinter by a large
margin, otherwise the data has poor separability. In fact, compdpinganddiner gives a good
gauge of the quality of the feature selection and distance measure. Wehtiesee such that two
samples distanced M have a similarity of 0.5:

(dintra + dinter)2 1 dintra + dinter
Xp | =5 | T 5 T = 5.47
P 4o 2 2v/In 2 (5.47)

The intuition behind this choice is that, given that both distance and similarityrhage[0, 1], two
samples placed at the most ambiguous distance should be midway in terms of simdaviy.
Computing the average distanetga anddjnter would necessitat@(tQ) distance computations,
one for each pair of training samples. A time-efficient approach we ehimopractice is to do a
random sampling: two samples andx; are randomly chosen from the training set, their distance

is computed and considered ki, if y; = y;, or for dinter Otherwise. We used 2.5% of the data in

138

five successive trialsy varied by no more than 1% among trials. This is encouraging in scenarios
where ¢ > u).
Choosinga in this manner yielded much better performance in our tests than grid seareh an

method based on the Minimum Spanning Tree [238, § 7.3].

5.8 Speed Measurements for Unstructured Classification

We have measured the run time of the Vocal Joystick experiment enhaitbddivirees for nearest
neighbors estimation, graph reduction, and in-place label propagatiosm.mbderate corpus size
allowed us to run, for comparison purposes, the brute-force naaggibors algorithm for graph
construction and also the classic iterative label propagation (AlgorithitWB were unable to con-
struct the full graph in memory so there is no comparison point for fulllyregrsus reduced graph
memory consumption; this is admittedly an obvious point that needs no experiraeitkance.)
We then measured the run time of the proposed approach using kd-trescéderating nearest
neighbors search, and our in-place label propagation (Algorithm 1).

In both brute-force and kd-tree experiments, one graph was builtafion st utterance (in
keeping with the approach to measuring accuracy). Therefore twestaaighbor searches must
be performed. First, the training set must be searched for each sampéedartent utterance (for
the labeled-unlabeled connections formig). Second, the samples in the current utterance must
be also cross-searched (for the labeled-unlabeled connections doPgin Again in both cases,
we observed the common practice of keeping the list of current neagggthor candidates in a
binary heap [52] in order to not let the size of the list add to the complexitg.ritimber of nearest
neighbors retained was= 10.

In the brute-force experiments, we computed the nearest neighborehy $i@arch against both
sets. In the kd-tree experiments, we first built one kd-tree for the ergirgrig set. The tree was
then reused across all test utterances. Then, for each test utieverioglt a separate kd-tree. This
second tree is needed to compute the unlabeled-to-unlabeled connections.

The same systems-level optimizations have been applied to both implementatiersystém
accuracy has been the same in both cases, although the individuallsdét teave been slightly

different on occasion due to different order in which floating pointrappens have been carried.

139

We conducted five timing experiments, one at a time, on the same machine andedager-
age and standard deviation in each case. The computer used was ardAMIREBIne with 2 GHz
clock speed and 8 GB RAM. All data was stored on a local disk. The resiuttwn in Table 5.1
reveal two facts. First, kd-trees bring over two orders of magnitude iepnent (12%) in terms
of speed. Second, the classification time is dominated by graph constrattimugh our proposed
in-place label propagation is significantly faster than the state-of-thalarhative, there is little

improvement in total runtime.

The in-place label propagation was faster because it converged tlasteclassic iterative la-
bel propagation. Over the 49 graphs constructed for the dev seticclesative label propaga-
tion [238] took on average 21.45 steps to converge. The proposddda-label propagation took
on average 8.86 steps to converge. The complexity of each approaehdartte. The absolute

improvements in runtime depend on the density of the graphs.

5.9 Fast Graph Construction in String Spaces

Chapter 4 discusses graph-based learning using string kernels s lditauss scalability consid-
erations when string kernels are used as a similarity measure. The cogikeation involved in
creating the graph is computing the similaritie§((x;, y;)) , (x;,y;))) for all pairs of pairs (sic)
(xi,y4), (x4,y;) inthe test set. Recall that for structured learning with string kernels wa use
hypothesis-based approach that relies on an external generateate several hypotheses for each
unlabeled sample, so the semi-supervised (sub)system needs to eegeesisg function for pairs
{(x:,v:) - On the source sidex), the total number of kernel computations is (after eliminating alll

unnecessary computationsx;, x;) and taking the symmetmy(x;, x;) = x(x;, x;) into account):

u(u—1)

Cy=u-t 5

(5.48)

This scales poorly withu so we need to improve on that, particularly when we consider that
each kernel evaluation také¥|x;| - |x;|) time (in a dynamic programming implementation). Fur-

thermore, on the target sidg)(the total number of kernel evaluations in avedgreedy approach

140

(Z card y(xi)> [(Z card y(xi)> - 1]
i=1 i=1

Cy = 5

(5.49)

because there is one kernel evaluation for each pair of hypothesktheae arez card)(x;) total
=1
hypotheses.
In the following we will focus on the general problem of computing all similariiesveen two

sets of strings.

5.9.1 Inverted Index

Given that kernel evaluations against pairs of strings is relativelyresiye, there is a strong motiva-
tion for finding fast, inexpensive approximations of the real value. Tleisriigue is akin to finding
the nearest neighbors when constructing the graph: instead of ogevatavery connected graph,
we approximate it by only keeping the strongest edges. A good approximttite string ker-
nel would eliminate highly dissimilar string pairs, which form the bulk, and keepmbst similar
strings. Ideally the approximation method would have good recall suchahggnificantly similar
pairs are lost. The precision influences speed because a low pre@si@s fnany unneeded or
low-yield kernel evaluations.

One widely known data structure for approximating string similarities is knowmasrted
index The inverted index (also called inverted file by Knuth [123, Vol. 3, § 6r5pastings file)
is a data structure dating to way before the beginnings of automated compBtiog.indexes are
some of the earliest examples of systematic creation and use of invertedsndexerted indexes
have been a mainstay in computing and have seen a revived interest wittvéim af data mining,
information extraction, and Internet-scale search engines.

An inverted index [25] is a general structure applicable to generic stfistying” as defined

in 8 4.4.5, Definition 4.4.1). We formally define an inverted index below.

Definition 5.9.1. Given a collection of string$' = ((s1,...,s,)) over an alphabet, aninverted

indexis an associative arralythat associates each element ¥ to the set

I(w) = {Si € S|3] € {L) |5i|}7w = (SZ)[j]} (5.50)

141

that mapsw to the subset of strings in whiah occurs. An elemenk(w) of I is called aninverted

list.

In our application to Machine Translation and similar structured problemsing stris a sen-
tence and the collectiof' is a document (e.g. a training set). If a balanced tree is used as an
intermediate data structure, building an inverted index involves scarthisgquentially and ap-
pending for each sentengga sentence identifier (e.g. the sentence nurijlderthe node of the tree

corresponding to each word #. That mean®(|s;|log) time for sentence;. The total time for

constructing an inverted index for is thereforeO Z \s\) log E) , Which is satisfactory even

seS
using a straightforward algorithm. Sorting the obtained string list for each i8auseful and adds

@] ((E |s|> log (mag; |s|>> time. Finding all potentially similar sentences given the inverted

sE
seS

index is, however, a nontrivial algorithm, for which reason we discussdetail. (However, we

don’t consider it original to this work as similar and more involved technigueso be found in the
literature [241].)

5.9.1.1 Normalization by String Length

If the number of words in common is used as approximation for string similarity, Ity training

strings would be at an unfair advantage: long strings contain many wamdsherefore they will
appear similar to many short strings. We have already met a similar problemdiduissing string
kernels (8 4.3.1.1) where it was revealed that normalization is needed io abtziased kernels.
Therefore we define an approximated similarity for strings by normalizing &g#dometric mean

of the number of words in the strings, as follows.

Definition 5.9.2. Given two non-empty strings and¢ and denoting witiV (s) 2 {w € ¥ |3i €
{1,...,|s|},w = s;} andW(t) £ {w € ©|F € {1,...,t|},w = t;} the sets of (distinct)

elements ins and respectively, we define the normalized bag-of-words similaritysaindt as:

_ card(W(s) N W (t))
Vcard(W(s)) - card(W(t))

Similarity o} is bounded withir0, 1] and can be considered an approximation of all normalized

op(s,) (5.51)

string kernels discussed in § 4.3.1.3. This is because those kernels @ynomon words and also

142

on the relative ordering of words; does measure word commonality, but ignores their ordering.
As such g, may return higher similarities than the actual kernels, but also lower similaritiesibe

it does not account for repeated words.

The plan is to devise a fast approximate method for finding the most similar swittgsigh
likelihood with a relatively small computational effort. After this step, the peekiernel computes

the actual similarities starting from the trimmed candidate list.

5.9.1.2 Algorithm for Approximating Most Similar Strings using an Inverteéxnd

Given some string and an inverted index, our aim is to quickly find the strings that contain the
most words in common witR. This will not yield a precise ranking of the most similar strings
according to the kernel because it only focuses on 1-grams and ggworel order and hence all
higher-ordem-grams. However, it does provide a reasonable approximation to ang keinel.

Algorithm 9 shows how the most similar strings can be efficiently found in a nierimeerted index.

The algorithm first selects a subggetof the index corresponding to the words contained in the
string, ignoring all the rest (section starting at line 2). This step t&kgs|) time and is where
most computational savings will occur, assumjeigis small relative tgX|. After this step,C is

systematically and exclusively used for counting the number of common strings

The algorithm makes use of two binary heaps [123, Vol. 3, § 5.2]. TheHeap,Hy, is a
min-heap of pairs((m, k)) containing string IDs and the number of common words they share
with the query strings. The binary min-heap is ordered by projection of its pairs on the second
member g, the occurrence count; the string ID is irrelevant to ordering). Tloegekearching the
heap for the strindeast similarto s is done inO(1) time. Inserting a new string in the heap takes
O(log|HR|) = O(logn) time.

The second binary min-heafl-, is a less usual construct. It organizes arrays of inverted lists,
and as such care must be exercised when reading Algorithm 9 so asconfiese elements of this
heap with elements of each inverted list stored in the heap. For exaimplé&) is the top of the
heap (consisting of one entire list of string IDs), wheréta@(HC))[l] is the leftmost string ID in

the list at the top of the heap. The unusual element is the ordering indydée beap: two heap

143

elements (i.e., two inverted lista)andb found in H¢ are ordered by the relation:
frontOrder(a, b) = ap) < b[l] (5.52)

In other words H orders inverted lists by the ID of the first string. Given that the inverted lists
are sorted in ascending order by string f; introduces ordering by thglobally smallest string ID
present in the index. This means thét offers O(1) access to the lowest string ID in the entire
setC. As items are removed from the heap (afiii heap maintenance preserves this property
in only O(log |H¢|) time. That is not the cumulated length of all lists, but instead the relatively
small number of inverted lists|H| is initially equal to|s| (the length of the sought string) and
decreases as elements are removed fffyn Also note that swapping elements Hy does not
entail swapping entire inverted lists, but instead swapping indirect poitadtee lists. As such,
swapping two elements df~ is O(1) and therefore operations difiz obey the usual complexity
bounds.

The outemhile loop counts, in each pass, the total number of words shareébg the indexed
string with the globally smallest ID found ifi. The approach is to repeatedly eliminate the first ID
in the top string in heapl. After each such operation, the inverted list might have become empty
(in which case it is removed off the list, line 16) or it still contains elements, in kvbase the heap
property must be preserved (line 19). The count of successfuktiidaion operations (i.e., passes
through therepeat loop) is exactly the number of (distinct) words that query stiramd stringm
have in common.

Lines 23 through 27 perform the insertion in the result heap. In a mammemon to topr
algorithms, insertion is done with “saturation:” we are only interested in the:to@atches so if
|Hr| = n and a match was found better than the worst match seen so far, we jusertaworst
match with the found one. Recall thHty is a min-heap of which top is the string having fleevest

words in common withs.

Complexity Analysis The innermostepeatloop makes one step for each training string that has
at least one word in common with the test string. Due to the heap managemerstefhéhkes
log |H¢| time. In turn,| Ho| decreases as elements are consumed pffbut in the worst case it is

no greater thafs|. So each pass through thepeatloop takedog |s| time.

144

Adding (or replacing) one element iy takesO(n) time, but is only done on average once
everyk steps, wheré is the average number of words thahas with a string irC.. In the worst
case, we have many train strings each sharing only one wordsWitBo in the worst case at each
pass through the outer loop we are takidog(n - |s|)) time.

The outer loop ceases whéhhas been exhausted entirely, which totals as many steps as accu-
mulated occurrences i@l of words ins:

T=0 (log(n Jsh Coun(w)> (5.53)
wes
where thecountfunction is the number of occurrences of waedn the inverted index.

This is the worst case complexity. The worst case situation occurs whdnti@aning string
has exactly one word in common with the test string, and whieontains a large fraction of the
corpus, i.es is a long string containing many distinct words. In practice this seldom happeh

at any rate any skewing would affect theg(n - |s|) factor, which is small to begin with.

Scalability Considerations Algorithm 9 is scalable to large systems because in addition to its
good theoretical complexity it also enjoys a number of properties relegaptdictical implementa-
tions. The inverted lists are scanned strictly sequentially and only theimt@liement needs to be

in memory in order to be organized in heHp:. The inverted index is therefore friendly to external
storage. Cache locality is not very good, however, because the listpameed in lockstep, there-
fore along searched sentence could fill the cache lines such that memastyitty will occur. In the
worst case, the sentence IDs are distributed evenly across the inN&itpd more cache-favorable

case is to have long running sequences of IDs that belong to a minority of lists

NLP-Specific Complexity Considerations In NLP applications, usually the sought string is a
sentence and the inverted index maps words (or word tags) to sentemt@siments in which the
word (or tag) occurs. The larger factor is the occurrence counteob#tarched string’s elements
in the training set. If the distribution of vocabulary elements in the corpus wgpeoximately
uniform, the count would be proportional ftg and to the number of strings in the corpus. However,

words in natural language sentences are Zipf-distributed [240, 43),(the frequency of a word

“Due to the wayC was created, any string in it has at least one word in commonswith

145

is roughly double the frequency of the next less-frequent wordg. distribution is skewed towards
the extremes, i.e. the most few frequent words decay slower and thé&ézpsint word frequencies
decay faster [137]. If we assume that the Zipf distribution applies to indlidtrings as well,

then longer test sentences have an exponentially decreasing overlapaiithg strings because

they contain less and less frequent distinct words. So we can practioaljder thag counfw)

wes

depends on the size of the training data but not on the length of

Following the Zipf law, the inverted index itself is very jagged (the number ahelds in the
inverted lists drops exponentially). The most frequent word is “the,uoang in 6.2%-7% of all
sentences [137, List 1.2]. The frequency decays to under 1% bygh#heéanked word (“is”). This
means that after stop word elimination, Algorithm 9 can perform approximate siyigearches

based on an inverted index by only accessing less that 1% of the trainisgrgences.

5.9.1.3 Loss of Inverted Index Compared to the Gapped String Kernel

In using an inverted index for approximating the most similar sentences éwherdesired exact

similarity would be computed by a gapped string kernel), there are two soofdeaccuracy:

* Word Repetitionin the inverted index, at least as implemented herein, repeated ocasrenc
of the same word within a sentence are not recorded; the index only telthevre word
occurs in a sentence at least once. Stop words appear repeatedhtdnces more often
than meaningful words, so stop word elimination should limit this source of néigether
useful technique for reducing the effect of word repetition is to usteser segmentation by

breaking compound and complex sentences into simple sentences.

« Word Order: The inverted index does not retain an important source of information—the
order of words in the original sentence. For example, the sentencek Sn@art not hard”

and “work hard not smart” are put in the same equivalence class by theavindex.

If the inverted index is used as a pre-filter to limit computation of the expefkere| to only
the topn estimated similar sentences and ignoring all others, the filtering effected lyvtréed

index may lose some of the most similar sentences (according to the real siepERcompute

146

kernel) and introduces others, not as similar, sentences in the lisp- We want to estimate the

loss introduced, which we will do in two ways:

1. By counts: For each test sentencg, determine the topn similar sentenced/; =
{(us;, ..., u;,) by using the actual similarity measure we are interested in, and the top

similar sentence®; = ((u;,,...,u;)) by using the inverted index. Then the loss is com-

puted as the average relative disagreement of the two sets:

- card(U; N UY)
Z: {1 card(Uy)
Lo(n) ==L (5.54)

u

as a value info, 1].

2. By accumulated similarity:Another approach to loss measurement takes into account the
fact that even the sentences mistakenly considered in {@gcording to the inverted index)
are not uniformly undesirable because some may be in fact close in similazitpake that
distinction, we compare the accumulated similarity of the stomatches as guessed by the
inverted index, with the accumulated similarity of the true topatches according to the

string kernel:

u Zo'b(u;jvxz)
=t > ob(uij, %)
L(n) = = (5.565)

u

Again, the loss is if0, 1]; in the case of a perfect match, there is no loss as the top approx-
imate similarities are the same as the true similarities so the fraction in the enumerator is
always 1. This measure is more informative thanbecause it directly reflects the loss of

good connections in the graph that is ultimately built using these most similar sesten

One simple technique that can be used to reduce the loss when using dedrimdex is to

over-allocatethe inverted index results, i.e., having the inverted index method select thg tep

147

estimates, i.e. more than the togestimated similar sentences. After that step, the precise method
inspects those estimates and retains the true tsimilar samples found. For example, the inverted
index select the top 100 most similar sentences, and then the precise similastyrensacomputed

for those and only the top 10 are retained. The speed of the appragretids to a controlled degree,
but the gain in precision may be justified. We want to measure to what extenatiwcation helps.

We have measured the loss of using an inverted index to find the most simileanses out of
the Europarl [124] training data for each sentence in the IWSLT 20P8][development set. The
original set was passed through a statistical chunker to split sentet@ssnialler chunks, resulting
in a total of 3902 chunks. We built an inverted index built from Europdrbgning data. After
sentence chunking, the train set size was 1,478,564 chunks (whichnaeosider sentences for
practical purposes and we will call them as such). The size of the utarglhis 72,480 words. The
lengths of the sentences varied between 1 and 40 words, with an alemgtjeof 12.6 words.

The reference used was the gapped string kernel in § 4.3.1.3 with penaity).5. Because
computing the actual top similarities for the entire corpus would have beeibjinaly expensive,
we approximated the loss on 5 uniform random subsamples of the develoggherach totaling 100
samples (about 2.56% of the test set size), and then took the averagtaadard deviation.

The first experiment computegl.(n) andLs(n) for various values of.. Table 5.3 displays the
results.

The count loss is high for the entire measured range of values Oh average, there was less
than 35% agreement between thenost similar sentences as predicted by the inverted index and
the reference string kernel. However, the similarity loss was relatively ilodicating that even
when the inverted index did not find the most similar sentences, it did findrexgen the same
neighborhood.

The second experiment measured the effect of over-allocation. Wenkepl0 and variedn,
between 20 and 1280, in geometric progression. Table 5.4 displays tiis.res

The count los<. and especially the similarity log3; are seeing a dramatic improvement with
growth ofn,. Note that values af,, that are relatively large comparedriare not degrading speed
significantly. This is because, compares against = 1,478, 564, the size of the training corpus.
Even atn, = 1280, less than one thousandth of kernel evaluations are performed catripate

brute force method.

148

5.9.2 Fast Cross-Product String Kernel Computation

In our application of graph-based learning for Statistical Machine Tatios (Chapter 4), even
after counting in the benefits of the pre-filtering done by the inverted incxputing the simi-
larities between two hypothesis sets remains a time-consuming step. Recabéforition 5.5.1
(last construction step) that once two hypothesis sets have been decliedimilar on the source
language side, all cross-product similarities between sentences in thetsvasst be computed on
the target language side. The maximum size of a hypothesis set can balledntsut that means
the search spac¥®(X) is truncated, which negatively impacts rescoring. Contemporary Statisti-
cal Machine Translation systems use hypothesis sets on the ortiét, & computing similarities
across two hypothesis sets entdilt§ kernel evaluations. We set out to improve on that number.
One key observation is that hypotheses in any given set are remasiablgr with one another,

often differing only by one word or by the order of words.

We formulate the problem as follows: given two sets of strigys= {si,...,sg} and
T = {t1,...,tp}, compute all kernel values(s;,t;) Vi € {1,...,[S]},j € {1,...,[T|}. We
are ultimately interested in the normalized kernel valiéés, t;) (§ 4.3.1.1), but computing the
normalization factors:(s;, s;) andx(t;,t;) is a linearO(|S| 4 |T'|) process that can be made part
of preprocessing. The bulk of kernel computations is computing keadaks for the Cartesian
productS x T. The kernel function of interest may be thdength gap-weighted string kernel or
the all-lengths gap-weighted string kernel, both described in § 4.3.1.3. Wetarilwith the latter

as it is easier to discuss and implement; the former follows a similar pattern.

Yin et al. [230] proposed a dynamic programming algorithm to compute the gtHsrgap-
weighted string kernel for two stringsandt in time O(|s| - |t|). We are interested in discussing the

actual procedure, so Algorithm 10 (page 167) shows it as originaliyqsed.

The algorithm maintains two bi-dimensional matricB®S, DPV € R'j‘x‘t' and computes
their elements at indiceg, j) from elements at smaller indices, in a classic dynamic programming
manner. Before introducing an algorithm for computing kernels over multiglggs, let us notice
one fact of interest: The valuBPS(i,j) is computed in the inner loop and used immediately;

past values o) PS are never used. We could eliminate$ entirely, but let us only modify the

149

algorithm slightly to store a more useful mati@xPSS defined as
J
DPSS(i,§) £ " DPS(i, k) (5.56)
k=1

So DPSS stores partial sums of columns IpPS. Algorithm 11 (page 168) shows the modified
algorithm definition. We replaced the matixPS with one transitory valué& PSij, and introduced
the DPSS matrix.

In the modified algorithm, the update &f has been hoisted out of the inner loop to the outer
loop. This modification does not have optimization consequences, as thiddopeloes the same
amount of work by updating th&®PSS matrix. The more important effect obtained is that now
the matrix DPSS enjoys a useful property (along witRPV). If strings s, s’ share a prefix of
lengthl, and stringg, t’ share a prefix of length, then let us denote the matrices resulting after
the kernel values have been computed (fart) and (s’,t’) respectively ag DPV, DPSS) and
(DPV',DPSS’). Then

DPV(0:15,0:1;) = DPV'(0:15,0:1;) (5.57)

DPSS(1:15,1:1;) = DPSS'(1: 15,1 1 1y) (5.58)

In other words, the matrices share a rectangular region in the top-lefrcorhe width of the
rectangular region depends on the length of the shared prefix betwgén whereas its height
depends on the length of the shared prefix betweesl). So one simple idea to accelerate compu-
tation of all similarities between two sets of stringjs= {s1, ..., sg } andT = {t1,..., ¢} isto
exploit this property by making the matric&”SS and DPV persistent (i.e., outlasting one kernel
evaluation) and then ordering the Cartesian product’ such that consecutive string pairs share as
long a prefix as possible. Then, for each kernel computation, onlycadneof the matriceD PV
and DPSS must be evaluated.

We could attempt to build structure over the sek T directly. However, that set has a large
cardinality so it would be preferable to avoid operating on it directly (in alllilied, handling
S x T would exhibit the high complexity that we wanted to avoid in the first place)ttab&pproach
is to induce structure ove$ andT separately. To do so, let us make an observation derived from
Eq. 5.57: for a given string, two stringss ands’ sharing a prefix of length, will share the first,

rows of DPSS and DPV. To compute similarities betweenands’ on the left hand side, artdon

150

the right-hand side, we do not need to compute full matrices for eachlkemm@utation; the first,
rows only need be computed once.

To benefit of such savings, we arrange the string$§'im a trie [123, Vol. 3, § 6.3: Digital
Searching, pp. 492] and we distribute the rows of the matrieB§'S and DPV along the nodes
of the trie. A trie (also known as retrieval tree or prefix tree) providesrapact representation
of strings with shared prefixes, which is exactly what is needed. Fonglea given the sentences

setsS:
Mary has a praline

Mary has a candy bar

Mary has chocolate
the corresponding word-level trie is shown is shown in Fig. 5.9.2.

Mary

@ @odaw

Figure 5.1: Three sentences organized in a trie. The shared prafxesliapsed together.

Consider that we organize the entire $ein a trie. Key to the proposed algorithm is that we
distribute the rows ofDPSS and DPV along the nodes of the trie: a node at depih the trie
stores the™ row of DPSS and DPV. This is correct because those rows would have the same
value anyway due to the shared prefix. What we effectively obtainecc@rgpact way to store
many DPSS and DPV matrices, one for each string i

Consider now the séf containing only the sentence:

Mary has a little lamb

151

To compute similarities of that sentence watth three sentences ifi, we perform any root-first
traversal of the trie (either depth-first or breadth-first). At eachenwse compute the entird' row
of DPSS and DPV by using the already-computed row in the parent node. The savings come

from the fact that rows for common prefixes3nonly need to be computed once. Instead of filling
S| 1S

[t}> " |si| rows, onlyN - |¢| rows need to be filled, whe® < > " |s;| is the number of nodes in

theﬁrlie (except for the root node). Algorithm 12 (page 169) Z:Blmput&zirallarities of a sentence
against a set of sentences. We use the notatipto denote “property associated with entity,”
as is the case with many of today’s programming languages. Also, we avsdlees of high-level
primitives with obvious implementation, such &sild Trie andpreOrder .

Algorithm 12 still has a large inefficiency: it exploits common prefixes on thehahd side, but

not on the right-hand side. Consider the right-hand sid&'set
Mary has a little lamb

Mary has a tiny lamb
For each of the two strings ilY, and for each node in the trie constructed fron§, the vec-

torsr.DPSS andr.DPV are filled from scratch, even though their first three columns are identical.
We would like to also avoid repeated computation on the right-hand side. Ithappear that orga-
nizing T in a trie would yield similar benefits to those obtained $orbut a simpler method that is
just as efficient is to simply sofff in lexicographic order. Lexicographical sorting is a well-studied
problem with efficient algorithms. Incidentally, a good lexicographicalisgmethod relies on a
trie [123, Vol. 3, Ch. 5]. After sorting, consecutive stringsiirwill always have the longest pos-
sible common prefix. If we then use information about the common prefix ofutrertt and last
string inT', we can only compute a fraction of the columns inth@PSS andr.DPV at each pass
through the trie. Algorithm ®PNTRIE 13 (page 170) realizes this idea.

A few details about Algorithm 13 are worth noting. Instead of yielding a matfix<]Ri'f'xm,
the algorithm writes the results sequentially to a tape. This is to emphasize thattthe is in-
cremental and there is no need to hold the entire output in memory, which is antampodetail
because otherwise the memory consumption of the algorithm would be caididbigher. Dis-
counting the tape, the actual memory requirements of the algoritidd)s- max t]), whereN is
the number of nodes in the trie. (The trie’s management overhead amount®mstant factor.)

Had the algorithm used an output matrix, that would have taken addit@®(4l - |7'|) space unless

152

additional measures are taken to make the matrix sparse. Using a tape idrdatjjies that no

additional memory is needed beyond the trie.

5.9.3 Collecting Results

For graph construction we are interested in the strongest edges, i.ergi lzormalized similar-
ities. To efficiently collect the highest kernel values, we use a classiévtaopy algorithm that
uses a binary heap [52] to efficiently store the best similarities seen Fadarithm 14 (page 171)
shows the heap-based algorithm that is connected to the output tdpgdgorithm 13.

The complexity of the topgV-copy algorithm iO(|7|-log V), where|7| is the length of the input
tape. The dominant operation inside the loop (assuming: |.S| x |T'|) is thereplace Top operation
which takes time logarithmic itV. As discussed, the self-similaritiegs;, s;) andx(t;,t;) needed

for normalization are computed once and kept separately.

5.9.4 Complexity

One individual kernel evaluation against stringand¢ takesO(|s| - |t|) elementary operations. A
brute force evaluation against two sets of striSgend7” therefore has time complexity:

S| |7 S| 7|

Cortel S, T) 2O D sl - 1t5l | =0 | [D Isal | - [D Ity (5.59)
i=1 j=1

i=1 j=1
To calculate the complexity of EINTRIE, let us introduce an auxiliary function:
prefixes : F(X*) x N* — N* (5.60)
prefixes(A,n) = card ({z € £" |Ja € A,a(1:n) = x}) (5.61)

wherea(1 : n) is the substring from 1 ta of stringa, andF(X) (also defined in Eq. 4.6) is the

finite power set of some séf:
F(X)={AeP(X)]| card(A) < oo} (5.62)

Colloquially, prefixes(S, n) is the number of distinct prefixes of lengthn string setS. When
Algorithm 13 executes, at each deptin the trie it will computeprefixes(S, i) rows for the ma-

trices DPSS and DPV. However, not all columns are computed every pass; the first column is

153

computedprefixes(T, 1) times, the second is computg(r’, 2) times, ..., thej™ column is com-
putedprefixes(T’, j) times. So the number of elementary operations at deisth
0; = prefixes(.S, 1) Z prefixes(T', j) (5.63)
Jj>1

Summing over all levels we obtain the overall complexity:

Covwwtrie(S,T) = O Zpreﬁxes(S,i) . Zpreﬁxes(T,j) (5.64)
i>1 j>1

It is trivially shown that the two sums are in fact equal to the number of nodte tries that
would be built out ofS andT (excluding the root node). This is in keeping with intuition: the
more prefixes are shared, the more compact the tries are, and the mordat@mnpran be saved
compared to the brute force approach.

The worst-case complexity is attained when no two strings share the sanxeapicefs the same
as the complexity of the brute-force approach. If vocabulary size isitake account, another
bound exists because there can be no more [findistinct prefixes of length, which limits the
sum of prefixes in a setS to no more thany|™a*ses sl however, the exponential nature of that

possible bound makes it inoperative beyond very small vocabulariegeamdhort strings.

5.9.5 System-level Optimizations

Practical algorithm implementations must not only faithfully follow the definition efakgorithm,
but should also account for the many details that can influence speemiemdry consumption,
sometimes to a surprisingly large extent or even subverting the algorithmigtied complexity’

We implemented the all-strings gap-weighted kernel algorithm for the Carteidnct of two
sets (Algorithm 13) and carried timing measurements against the hypotle¢sasareal medium-
sized corpus for Machine Translation, Europarl [124]. The negtize describes in detail the
experimental setup. For now, we show how various system-level optimigatilnenced the final
timings of the implementation of the proposed approach in Table 5.5.

The improvements are highly system-dependent and we present therfofonative purposes

only. Itis likely that on a different system the relative participation of egmimization would differ.

°A classic example is &(n) loop transformed into afD(nQ) one by a poor implementation of an array append
operation that is system-provided and assumed to be correct.

154

Also, changing the order in which optimizations are applied would lead to €iffgercentages.
For example, optimization #5 brings a 5% absolute improvement when all ottigrizgtions are

already in effect; measuring its effect before all others may improve itsureéparticipation level.

The section below compares the proposed algorithm against a brueedeatuation of S| -
|T| kernel values. It should be noted that all of the above optimizations Hawebaen carried
in the brute-force implementation where applicable, including two others thaiairavailable to
the trie-based version: (a) keeping only the last rowDd#tV and eliminatingDPS entirely (see
Algorithm 10); and (b) swapping inputs appropriately such that the inrogr &ways operates on
the shorter of the two strings. Combined, these two measures lead to a memswngion of

only O(min(|s|, |t|)) for the brute force algorithm.

5.9.6 Timing Measurements

To gauge the improvements brought by the proposed method, we timed tle¢ d@mputations on
hypotheses in the Europarl [124] corpus, starting from the same sethptadescribed in § 5.9.1.3.
We generated up to 100-best hypotheses per chunk, resulting in eagena 72.8 hypotheses for
each chunk. (Short sentences have fewer than 100 hypothesdg.ir@que (distinct) hypotheses
have been generated for each hypothesis set; duplicated hypothmddsunfairly favor the pro-
posed approach because the incremental cost of kernel evaluatidaplicated sentences is null
(which is nonetheless an important property of theNDRIE algorithm). All things considered,
about 20.7 million distinct kernel evaluations would need to be made if the Garteduct of all
hypothesis pairs would be evaluated. Practical approaches would suaidcomputation by, for
example, only computing the Cartesian product for hypotheses that flickesily similar on the
source side and consider the rest dissimilar. However, the savings bivth&rIE method have
effect for each pair of hypothesis sets, so the comparison is meaningful.

We measured the time to completion of a brute-force approach against thespdoalgorithm.
Sorting the input and normalization were not considered part of the ggaed were not timed.
However, the time needed to build the trie was included in the timingyof TRIE, and collection
of the top hypotheses using Algorithm 14 (the binary heap-based/tappy) was considered part

of the process and was included in both timings.

155

 time (s)

60 /

90 T

30 +

20 +

0 1 1 1 —> N
0 1000 2000 3000 4000
Figure 5.2: Timing comparison of brute force kernel computation (hollow)datstrie-based dy-
namic programming computation (full dots). The graph displays the time to compfeti@om-
paring one hypothesis set consisting of 73 hypotheses on one sidestdgdypothesis sets on the
other side. The average number of hypotheses per set is 72.8.

The plot in Figure 5.2 (next page) reveals considerable improvemeniglirby the proposed
algorithm for all input sizes. Figure 5.3 (page 156) displays the improvefaetor of the proposed
approach over the brute-force implementation. The improvements stay in tla@@x and do not
degrade for large values &f. We should note, however, that this experiment is somewhat favorable
to the trie-based approach: hypothesis sets are highly similar (albeit ideveical) so they are
likely to share prefixes more than e.g. randomly-chosen sentences.rapesed approach would

not yield notable improvements if there is no significant prefix sharing adrgmits (e.g. short

156

strings randomly drawn from a large alphabet.)

B time (trie)
A Y time (brute force)

3 + -)

2 .

1 .

0 1 1 1 1 > N
0 1000 2000 3000 4000

Figure 5.3: The variation of the improvement factor of the proposed algoer a brute force
implementation on the same experiment as in Fig. 5.2.

5.9.7 Considerations on Parallelization

The brute-force approach has an obvious path towards parallelizasiomply divide either or both
sides of the computation in batches and deliver them to separate computat®rEach of these
deposits results in a synchronized queue that feeds &toppy collector.

The trie-based approach is also parallelizable. Ar@approach would be to exploit the prop-
erty that at any branching point in the trie, there is no data sharing belolWwetelore, computation
can be forked onto different units at any branching point in the trie. é¥&w the subtrees resulting
after branching can be very unequal in size, leading to an uneven digirilof computation. Fur-
thermore, once a computing unit is done, there is no obvious point at widohld restart work on
a different part of the trie.

A worklist-based approach is better suited: initially, the root’s children ateirpa worklist
containing trie nodes. Each computing unit takes one node off the worldisylates that node’s
DPV, DPSS, andK, and puts that node’s children back onto the list (save perhaps faoohean
continue computing without consulting the worklist). Once a computing unit is, dbagain fetches
any node off the worklist and resumes work. That way the worklist isieoausly populated with

nodes in the trie for which kernel computation can immediately proceed (asuteéstcomputation

157

has finished). Computation has finished when all threads are idle and thistis empty.
The worklist must be properly synchronized, but the overhead otepworary architectures is
low; the order of processing worklist items does not matter and singly-likesdwith prepending

as the fundamental insertion operation can be implemented with lock-freangees [220, 81].

A different approach to parallelization can exploit characteristics of ¢éta set used. For ex-
ample, in the SMT scenario, the hypothesis sets provide a natural meaatsiuhlg data. Also, the
batching is highly effective because sentences in a hypothesis sets temditoilar. Our approach

is to build one trie out of each hypothesis set and distribute its computation tac@resping unit.

5.10 Batching via Path Closures for GBL with Structured Inputs and Ouputs

We describe below a method for reducing graph sizes with no or small lossumaey for graph-
based learning with structured inputs and outputs following the formalisnemptex in Chapter 4.
The reduction is important when there are very large amounts of unlabateddd memory con-
sumption becomes a concern. Our proposed solution trades consumedyniermommputation;
instead of a large graph it builds and uses several smaller graphs, ednthin different portions
of interest of the large graph. Depending on the original graph’sextivity, there could be no loss
or a controllable tradeoff between loss and occupied memory.

Recall from Chapter 4 that the size of a fully constructed graph fs+ 2, whererh is the aver-
age number of hypotheses per unlabeled sample. We have partly solsirktpeoblem already by
having all train data occupying only two vertices in the in-core graph, seitieeof the representa-
tion is essentially independent of the training set size. We still need to takeirasaghen scaling
up the approach to large test sets. The number of hypotheses is to sonteerteollable, but ifa
is large there is the risk that the graph becomes too large to be manageableretites the need
for batching i.e., devising a means to compute scores on one subset of the unlabeled geten
time. That way several smaller graphs are used instead of a large one.

A principled way to achieve a good semi-supervised effect without tipgran the entire graph
at once is to work only on one test sample’s hypotheses at any given tineeke®@p only the
subgraph of interest for that test sample, which needs only to include ttieegereachable from

that test sample’s hypotheses. It is worth noting that reducing the gagshrobt change the graph,

158

so the learning process is still global; only the portions of the graph natir@iéo computing certain
scores are removed. We will formally prove that below, but first let dmeée path in a graph as a

sequence of distinct connected vertices that links two given vertices.

Definition 5.10.1. Given the undirected graflV, E), apathbetween vertices € V andv’ € V' is

a sequence of verticebv, vy, . .., v,,v') satisfying:
{v,v1},{vp,v'} € E (connected start/endpoint) (5.65)
{vi—1,v;} € EVie{2,...,n} (connected consecutive vertices) (5.66)
i#jevFoVi,je{l,...,n} (distinct inner vertices) (5.67)
v, v & {vg, ..., v} (inner vertices distinct from start/endpoint) (5.68)

The sequence(v,v')) is also a path betweemand’ if and only if {v,v'} € E. A path is
acycleif v = v andacyclicotherwise. We denote the set of all paths between the two nodes as

Paths v, g (v,).

Our study is only concerned with acyclic paths, but the definition above sibywales in order
to stay in keeping with the definition of “path” in established graph terminologl/thos avoid

confusion. Acyclic paths may consolidate Eq. 5.65 with Eq. 5.66 and EqVBtBE(Q. 5.68.

Definition 5.10.2. Given the undirected graglV,) and a subset” C V, we denotgV, E) \ V'
as the graph obtained frof, £') after removing alb € V'’ and all edges that have at least one end

in VvV’
(V.EO\V'&£(V\V {{v,v'} e E|vg V' AV ¢ V'}) (5.69)

Theorem 5.10.3.Consider a similarity grapHV, E') constructed as per Definition 5.5.1 for the
structured learning problem defined by featutes= ((x1,...,%x¢4y) C X, training labels
Y = (y1,...,y¢) C Y, similarity functiono : (X x)) x (X x)) — [0,1], and hypothe-
sis generator functiony : X — F()). Given vertice,v’ € V \ {vy,v_} withv # o/, if
Paths (v, g)\ {v, v_} (v,v") = 0, then removing vertex’ from the graph does not affestv) com-

puted by label propagation.

159

Proof (by contradiction).Assume that the score computed fdn the graph(V, E) \ {v'} is differ-
ent from the score computed foiin the graph(V, E'). Then, under the random walk interpretation
of label propagation, this means there is at least one pathdraneitherv,. or v_ passing through
v’. That path influences the probability of the random walk startingeatd ending in, orv_, and
hence the scorgv). Then the sub-path fromup tov’, which does not include either. or v_ (by

the definition of a path), contradicts the hypothesis thets v, g\ (v, v} (v, v") = 0. O

We are now in the position of defining a smaller graph on which to computessfmrene given
hypothesis. The unlabeled vertices needed for the precise score ctimpatdypotheseg(x) are
exactly those for which a path exists from some hypothesis to them. We forrttadizeet as aath

closure

Definition 5.10.4. Given the undirected gragh’, E) and a subset of its verticds C V', we define
thepath closure of V, E) over V" as the graptPaths* .) (V') £ (V”, E"), where:

V' = {v eV |3 € V' Paths(E,v,v") # @} (5.70)

E'={{v,v'} € E|v,v eV"} (5.71)

Corollary 5.10.5. To compute correct scores for the hypotheses of sagihethe similarity graph

(V, E), the subgraptPaths™* v g\ v, »_} (x(x:)) is sufficient.

Proof. Immediate from Definition 5.10.4 and Theorem 5.10.3. After removing (withtietiéng
scores) all vertices ifiV, E) with no paths from some hypothesisyiix;), what is left is by defini-

tion the path closure of(x;). O

So the transitive closure of the edge set over a subset of veltices V is the smallest com-
ponent of the original graptV, E) containing all vertices reachable from some verte¥X in This
smaller graph does not affect the outcome of the learning process flodhletest sample. In the
worst theoretical case, the path closure could comprehend the enfite td in practice the edge
set is almost never that dense. To counter for the possible worst-cazari®, we use a cutoff’
that limits the number of vertices in the subgraph. The vertex set is computédgfaom the

vertices of the hypothesis and expands from there. This growth stretdgsed on the heuristic

160

that faraway nodes connected through low-weight edges have lagmiodl on the result. We use a
simple embodiment of this heuristic in a work-list approach implemented by Algodfhm

Starting from the nodes of interest (hypotheses for the focal sentemeexpand the closure
starting with the direct neighbors, which have the largest influence; tietthair neighbors, which
have less influence, and so forth. A thresh6ldon the number of added vertices limits undue
expansion while capturing either the entire closure or an approximation dietalgorithm makes
iteration over the edge sét explicit, to clarify thatE' does not have to reside in core memory at any
point throughout the algorithm.

Another practical computational advantage of portioning work in batchiaiggraphs for dif-
ferent hypothesis sets can be trivially created and used in paralleleasdistributing large matrix-
vector multiplication is much more difficult [48]. The disadvantage is that dverdundant com-
putations are being made: incomplete estimates afe computed for the ancillary nodes in the

transitive closure and then discarded.

161

Algorithm 6 : KDSEARCH. Searching a kd-tree for the nearest neighbor of a query point [85]

Input: kd-treeT’; bounding hyperrectanglg = co; query pointz,; candidate distance. = oo; candidate point
z. = undefined
Output: Tuple of nearest point, smallest distance, and completion informatign r,,, c)) .
1 if isLeafT") then

5 r— grél;ld(zq,z);
3 if » < r.then
4 (Ze,me)) — (zr,7)5

5 if BOUNDSENCLOSEBALL (R, z4, rc) thenreturn ((z.,rc,true)) ;
6 end
7 else
8 if (Zq)[dT] < cr then
9 T — left(T);
10 T" «— right(T);
11 R’ «— leftCut(R, dr, cT);
12 R’ — rightCut(R, dr, cT);
13 else
14 T right(T);
15 T" — left(T);
16 R’ « rightCut(R, dr, cT);
17 R" — leftCut(R, dr, cT);
18 end

19 {ze, 7%, c) «— KDSEARCH(T', R, 24,7¢);

20 if cthen return ((z., ., true)) ;

21 if v, < r. then

22 (Zere) — (abarl);

23 end

24 if BOUNDSOVERLAPBALL (R, zg,7.) then
25 (2, re c) < KDSEARCH(T" , R" 24, 7c);
26 if cthenreturn (=, ry, true));

27 if ;| < r. then

28 (Zerre) — (22,0

29 end

30 end

31 end

32 return {(z.,r.,false) ;

162

Algorithm 7: The BOUNDSENCLOSEBALL subroutine returngue if and only if hyperrect-
angle R completely engulfs hypersphere centered af radiusr. The precondition is that

z € R.

Input: Hyperrectangle® € RE*2, pointz € RX, radiusr € R..
Output: Boolean indicating whether the hypersphere of radiasntered irz is completely
enclosed inside the hyperrectangle
1 fori=1..Kdo
it D (di (5, R)) < rthen

3 return false;

N

4 end

s it D (di (g, Riy™)) < r then

6 return false;
7 end
s end

9 return true ;

163

Algorithm 8: BOUNDSOVERLAPBALL returnstrue if and only if there exists a non-empty

intersection between the hyperrectangland the hypersphere centerec atf radiusr.
Input : Hyperrectangle? € RX*2, pointz € R¥, radiusr € R,.

Output: Boolean indicating whether the hypersphere of radiaentered ir intersects the
hyperrectangle.
15«0
2fori=1.. Kdo
3 if 2 < Rjj™ then
4 s — s+ d;i(zp), Rﬁin);

5 else ifzy) > Rﬁa" then

6 s s+ di(z), Rﬁax);
7 else

8 continue;

9 end

10 if s> D~!(r) then

11 return false;
12 end
13 end

14 return true ;

Step Run time (seconds)

Graph construction (brute force nearest neighbor3)703.07 + 414.56

Graph construction (kd-trees) 193.77+ 0.57
Label propagation iterative per [238] 6.45+ 1.72
Label propagation in-place proposed in § 5.3.1 2.59+ 041

Table 5.1: Run time for brute force graph construction and original latogdggation vs. kd-trees
and in-place label propagation. Graph construction is improved by twer®af magnitude. Con-
vergence speed is also largely improved, but has a relatively small adidrikio the overall run
time.

164

Algorithm 9: Finding the strings sharing most words with a given string in an invertecinde
Input: String s without repeated words; inverted indéxeach!/ (w) is a sorted array of numeric string

identifiers;n, the limit for the most similar strings.
Output: The topn strings containing the most words in common with
/ = Create the searched subset of 1 */
2 C 0
3 for w € sdo
4 if I(w) #@thenC «— C I(w)
5 end

/= Search (' transversally maintaining the result heap */

[¢]

Hp — makeEmptyHedp;
Hc «— makeFrontHeaf(C');
while |[Hc| > 0do

o N

[+ Select minimum m and its count k off index’s head */

9 m «— (top(Hce)),;

10 k< 0;

11 repeat

12 k—k+1;

13 top(He) < (top(He)) (g, jtop o))5
14 if [top(Hc)| = 0then

16 pop(Hc);

17 else

19 percolateDowiiH ¢);

20 end

21 until [Ho| =0V (top(Hc)y # m;

23 if lengt(Hg) < n then

24 push(Hr, (m, k));

25 else iftop(Hr).k < k then

27 replaceTopHr, (m, k));

28 end

29 if |[Hc| < top(Hg).k V top(Hr).k = |s| then
30 break while;

31 end

32 end

33 return Hg;

165

Primitive Complexity Comments

makeFrontHeafC') O(|C) Organizes elements {fi as a heap using Eq. 5.52 as the order-
ing relation. No additional storage is hecessérys organized
in situ by swapping its elements in-place. Empty list€fiare
not put in the heap.

|H | O(1) Number of elements in heap.

top(H) O(1) Returns the element at the top of help (Usually that ele-
ment is stored at the first position in the array underlying the
heap.)

pop(H) O(log |H|) Removes the top of heafi while preserving the heap prop-
erty.

percolateDowH) O(log|H|) Assuming the top of the heap has mutated, re-establishes
the heap property by swapping that element appropriately.
Ronngren and Ayani [192] argue that the practical average in-
sertion time ig0(1).

replaceTopH, e) O(log|H|) Replaces the top of the heap withand then re-establishes
the heap property. Technically not a primitive: evaluates

replaceTofH) < e followed by percolateDow(H).

Table 5.2: Heap primitives used by Algorithm 9. General texts on algorithrdsdata struc-
tures [123, 52] cover implementation of heap primitives in detail.

166

n CountlossC.(n) (%) Similarity lossC,(n) (%)

10 66.46:3.01 13.132.39
20 65.68:3.23 12.78&2.51
30 65.84:3.97 12.84-2.75
40 65.9G:3.31 12.7%2.67
50 65.72:2.42 12.682.46

Table 5.3: Loss in the inverted index depending on the cutoff for most singfdesces. The frac-
tional numbersC.(n) (Eg. 5.54) ands(n) (Eq. 5.55) are multiplied by 100 to obtain percentages.

n, CountlossC.(n) (%) Similarity lossCs(n) (%)

20 58.04:2.96 7.45£1.37
40 49.0@:3.10 4.62:0.80
80 40.54:2.53 2.86£0.46
160 31.881.93 1.84:-0.30
320 26.1@-1.57 1.240.22
640 19.5&:1.31 0.73:0.25
1280 14.221.73 0.4740.18

Table 5.4: Dependency of loss on over-allocation. Outgamples selected by using the inverted

index, the top» = 10 have been retained using the string kernel.

167

Algorithm 10: All-lengths gap-weighted kernel as proposed by Yin et al. [230]

Input: Stringss, t; gap penalty\ € R.
Output: All-lengths gap-weighted similaritk’ € R
1 DPS(1:|s|,1:|t]) =0;
2 DPV(0,0: |t|) = 0;
3 DPV(1:]s|,0) =0;
4 K =0
5 fori=1:|s| do

6 for j =1:|t|do

7 if s; =t; then

8 DPS(i,j) «— 1+ DPV(i—1,j —1);

9 K — K + DPS(i,j);

10 end

11 DPV (i, j) « DPS(i,j) +ADPV (i,j—1)+ADPV (i—1,§) = A*DPV (i—1,5—1);
12 end

13 end

14 return K;

168

Algorithm 11: Modified all-lengths gap-weighted kernel

Input: Stringss, t; gap penaltys € R, .
Output: All-lengths gap-weighted similarity € R
1 DPSS(1:|s|,1:t]) =0;
2 DPV(0,0: |t|) = 0;
3 DPV(1:|s],0) = 0;
4 K=0;
s fori=1:]s|do

6 for j =1:|t|do

7 if s; =t; then

8 DPSiyj — 1+ DPV(i—1,j —1);

9 DPSS (i, j) < DPSS(i,j) + DPSij;

10 else

11 DPSij «— 0;

12 end

13 DPV (i, §) — DPSij+ADPV (i,j — 1)+ ADPV (i —1,7) = X>’DPV (i — 1,5 — 1);
14 end

15 K — K + DPSS(i, |t|);
16 end

17 return K;

169

Algorithm 12: All-lengths gapped kernel of a string against a set of strings

Input: String setS = {s1, ..., s|g}; stringt; gap penalty € R,..
Output: All-lengths gap-weighted similarities” € R‘f'

1 root = buildTrie(S);
2 root.DPSS(1: |t|) = 0;
3 root.DPV (0 : |t|) = 0;

4 for r € preOrder(root) do

5 r.DPSS(1:|t|) =0;
6 r.DPV(0)=0;
7 forj=1:]t/do
8 if r.key = t; then
9 DPSij < 1+ r.parent. DPV (j — 1);
10 r.DPSS(i,7) < r.DPSS(i, j) + DPSij;
11 else
12 DPSij — 0;
13 end
14 r.DPV(i,j) <
DPSij + X(r.DPV (j — 1) 4 r.parent. DPV (5)) — XN*r.parent. DPV (j — 1);
15 end
16 r.K <« r.parent. K + r.DPSS(i, |t]);
17 end

18 return CollectK FromLeaves(root);

170

Algorithm 13: DYNTRIE: All-lengths gapped kernel of a set of strings against a set of strings
Input: String setS = {s1, ..., s|g/}; string setl" = {t1,...,t7}; gap penaltyA € R ; output taper.

[SIx|T|
+

Output: All-lengths gap-weighted similaritie&” € R are written to tape-.

1 root = buildTrie(S);

2 root.DPSS(1: |t|) = 0;

3 100ot.DPV (0 : |t|) = 0;

4 " =g

5 for t € LexicographicalSort(T) do

6 I «— CommonPrefizrLength(t",t);

7 " — ¢

8 for r € preOrder(root) do

9 if I > 0then

10 r.DPSS(l+1: |t|) = r.DPSS(1);

11 else

12 r.DPSS(1: |t]) = 0;

13 r.DPV(0) = 0;

14 end

15 for j=1+1:[t|do

16 if r.key = t; then

17 DPSij «— 1+ r.parent. DPV (j — 1);
18 r.DPSS(i, j) « r.DPSS(i,) + DPSij;
19 else
20 DPSij « 0;
21 end
22 7.DPV (i,j) + DPSij + X(r.DPV (j — 1) + r.parent. DPV (5)) — A’r.parent. DPV (j — 1);
23 end
24 r.K < r.parent. K + r.DPSS(3, |t]);
25 if r.IsLeaf then Write(r, r.string, t,r.K);
26 end

27 end

171

Algorithm 14: Obtaining the top kernel values.

Input : Input taper; Maximum values kepiV; Criterion functionBetterThan.

Output: Array of largest similaritieg.

1 h «— makeEmptyHeap;
2 for ((s,t,k(s,t)) € Read(r) do

8

K(s,t))
VE(s, s)k(t,)

if h.size < N then
h.push({(s,t, &));

else

if betterThan((s,t,R)),top(h)) then
replace Top(h, {(s,t, &));

9 end
10 end
11 end
12 return h;
Optimization Improvement
1 Mostly contiguous allocation of the trie nodes 6%
2 Avoid reallocation (don’t shrink, keep the largest blocks allocate@so f 27%
3 Use one vector of pairs instead of two vectors®drV, DPSS 12%
4 Use unchecked pointers instead of indexed access in the inner loop 6%
5 Cache on the stack all indirectly-accessed values in the inner loop 5%
Total reduction in run time by 56%

Table 5.5: System-level optimizations in implementing Algorithm 13 and their influencine
timing results. The optimizations have been applied in the order shown, so opiim&®wards the
bottom may experience a diminished effect. The percents shown aretglrswitime improvements
compared to the unoptimized implementation of the same algorithm.

172

Algorithm 15: Batching via Path Closure with Cutoff

Input: Focal sampley, its hypotheseg(x), edge sef’, and cutoffC’ € N*.
Output: Graph(Vy, Ey) for the similarity graph dedicated to computing scores for
hypotheses of ;.
1 Vp e {{xpu) |y € xlxp)} U {og, v);
2 BEf — {{v,v'} € E|v,v € Vj};
3 ¢ < true;
4 while ¢ do
5 c < false

6 foreach{v',v"} € E do

7 if ' € Vi Av" ¢ ViU {vy,v_}then
8 Vi = VU {o"};

9 Ef — ErU{v "}

10 c « true;

11 else ifv” € Vy Av' ¢ ViU {vg,v_} then
12 Vi = Vi Uu{v'})

13 Ef — Eru{v "}

14 c « true;

15 end

16 if card(Vy) = C then

17 break while;

18 end

19 end

20 end

21 return (Vy, Ey);

173

Chapter 6
CONCLUSIONS

This dissertation has shown that Machine Learning methods based o gjlobarity graphs
can be used successfully against realistically-sized Human Languabrdlegy tasks addressing
problems in Natural Language Processing, Automatic Speech Recogaitidriiachine Transla-
tion.

We have addressed a number of challenges in applying graph-basg@ddga HLT tasks. We

summarize our contributions below.

Two-pass classifier for unstructured classification To address the heterogeneous, mixed, high-
dimensional nature of features in unstructured HLT classification problemsave introduced a
two-pass system (Chapter 3). A first-pass classifier, which can ls®oho better suit the nature of
the features, serves as a feature transformation mechanism. In theguigmiup, interestingly, the
graph-based learner operates on the same space for input and puatbility distribution space.
The input space is organized using a distance measure, which is eagieps® ¢han a distance in
the original heterogeneous feature space. We have experimentallgnoedhiihat Jensen-Shannon
divergence is the best distance measure to use in a variety of HLT appisatiorthermore, Jensen-
Shannon divergence enjoys mathematical properties that make it suitafdstfaearest neighbor
algorithms. We have proved that Jensen-Shannon divergence fulélieetiuirements for being
used with the kd-trees fast searching data structure, and implemented irmgasspeed gain of
two orders of magnitude in Chapter 5. Metric-based search structunelsecalso used because
Jensen-Shannon divergence is the square of a metric. We illustratdrid@ta-graph construction
with experiments on lexicon learning, word sense disambiguation (both int€&t@)y and phone

classification (Chapter 5).

Structured learning through regression with kernel functions The formalization is widely ap-

plicable and relies on a hypothesis generator functi¢e.g. a generative learner with good recall

174

and low precision) and a real-valued similarity functierthat returns a real number comparing
two input/output pairs for similarity. An important category of similarity functions kernel func-
tions, among which string kernels are of particular interest to HLT applicatidfe demonstrate an

application of graph-based learning with string kernels for Machineslasion.

Scalability A common theme in application of graph-based learning to large tasks is scalability
Graphs require the entire data set (training plus test) to be resident iingarlemory and con-
nected through similarity edges. This proposition raises obvious scalabitigeaos in terms of
sheer size and also in terms of time required to build the graph and then to almpfapagation
to completion. Naturally, scalability is an important focus of our work. We atthekscalability

problem on all fronts.

Graph Construction As far as the graph size is concerned, we prove and implement a graph re
duction technique that reduces the labeled sample size to one vertex pet thsiah (§ 5.4) without
affecting learning results. This reduction has a huge positive impact thrvamrking set size and
learning time. Also, we model additional information source without addingesdrtices by only
manipulating edge weights. This technique effects density gradients wittldingato the size of
the graph (8 3.8.1). In addition, as mentioned above, the use of a twaipasHier allows us to use
probability divergence measures with good properties, conduciveet@fuast nearest-neighbors
algorithms (such as our choice, kd-trees). For structured learnirgetisalgorithms are an alter-
native to nearest-neighbors algorithms. We propose an algorithm calle@®Ee, which combines
traditional matrix-based dynamic programming with the trie data structure to mditioaal sav-
ings in duplicate computations when computing cross-product kernel simsaoiir two sets of
strings. Experiments with MT data show that the proposed method is three tistastfean existing

approaches.

Learning Speed To improve propagation speed, we introduce (§ 5.3.1) an in-place latyehpr
gation algorithm that uses an improved model parameter as soon as it wastedngs opposed to
computing an entire batch of improved parameters in one epoch. Compardtenitassic iterative

algorithm, in-place propagation consumes half the memory and is fasteri(egpéally converges

175

in roughly one third of the number of steps). We also provide the theorgtioaf and implemen-
tation sketch of a multicore label propagation algorithm that uses paralleégsimg and benign
data races to distribute work on label propagation. The number of carelsecarbitrarily high, up
to the number of unlabeled samples. In our experiments, graph constrbasaiways dominated
total learning time, so improving propagation proper might seem of secpitarest. However,

continuous learning systems would derive a large benefit from imprawgzhgation times.

6.1 Future Directions

We see several directions in which our work can be continued and @der@nhe would concern
improving the learning proceger se regardless of the problem it is being applied to. The two-
pass classifier is currently trained in an open loop, i.e. there is no fdediosc the graph-based
engine to the first-pass classification engine. We do recognize that sraestbinthe distributions
of the first-pass classifier is essential for the good functioning of thehgibased learner and we
regularize the first-pass classifier accordingly, but we believe thasadimop, joint training of the
two classifiers would be closer to optimal. A simple example would be to optimize almaiwork
learner by introducing smoothness in the epoch-level decision on keepnegucing the learning
rate of the network. A more direct coupling is to offer back-propagatidorimation with errors
output by the graph-based learner, not (only) the neural netwopepr That approach would work
directly on minimizing the bottom-line goal.

Using other kernels than the Gaussian kernel (8 3.2) or string kerndlI8.(83) for computing
similarity is a direction worth exploring. Especially when HLT applications withctreed data
are concerned, the option of using tree and graph kernels (8 4.3)yiatigactive; trees and graphs
naturally occur in linguistics (e.g. syntax trees or semantic graphs). Usoigkernels would put
an even higher emphasis on scalability and efficiency. It may be worth rixglextending the
DYNTRIE algorithm to tree or graph matching, and also combining it with approximationdsoun
for obtaining fast approximate matches. Using other nearest-neighlimiqees aside from kd-
trees are a possible direction in exploring scalability.

As we have already hinted above, the fast convergence time obtainedfippused algorithm

suggests applicability to continuous learning systems and incremental karhere results are

176

needed at the same rate as input samples. Systems can be envisioned ttah radired-size
graph with historical samples and their connections, that changes slowbwasamples are seen
and old samples are discarded.

Finally, applications far removed from HLT can be attempted for scalabfghgibased learning.
The battery of proposed techniques extend applicability of graph-deastdng beyond problems

in which a notion of similarity could be easily defined.

177

Appendix A

TWO THEORETICAL BOUNDS FOR SPEED OF CONVERGENCE IN LABEL
PROPAGATION

We have computed two theoretical results that put upper bounds on the mofm&teps to
convergence within a given tolerancenithout actually running the label propagation algorithms.
Our implementation does not use these bounds but they may be usefuajpdr gnalysis and for
improving the graph construction step.

What constitutes a “good” matrixy that leads to quick convergence, and what bounds can be
derived about the number of steps to convergence? We compute suudstitepending on features
of Pyy. Our practical implementations do not use these theoretical bounds, purdheseful to
assess the quality of a graph before performing iterative label propagaainst it. We also hope
that this will inspire future work aimed at finding tighter bounds.

Let us recall the iteration core

fy — 1y (A.1)

f{J — PUUfU + PULYL (AZ)
This reveals that iterative label propagation is a repeated application ffrtbéon
Q1 [0,1] = [0,1]*, Q(X) =PwX +PuLY¥y (A.3)

The approach we will take to estimating the number of steps to convergencdefine a metric
space ovef0, 1]“*‘Z and then use the fixed point theorem [107, Ch. 7] to bound the steps to of

convergence of). Let us endow the séb, 1]*** with the distance measure

dinax (A, B) : [0,1]¢ = R (A.4)
dimax (A, B) = Aij — Bij A5
() ie?llf.ifu} | Ai il (A.5)

]G{l,,g}

178

It is trivial to verify that the spacé,.x = ([0, 1]“”, dmax) verifies the conditions for being metric
and complete.d,.x is in fact the Minkowski distance of infinite order.) This sets the stage for the

following theorem.

u

Theorem A.1. If {max , (Puv)ik = Ymax < 1, then function® is a contraction in the space
i€{l,...,u
k=1

St = (0,1, dina)

Proof. To prove that) is a contraction we need to shaly € (0, 1) such thatl,a.x(Q(A4), Q(B)) <
q - dmax(A, B) VA, B € [0, 1]**¢,

dmaX(Q(A), Q(B)) = max) max (PUUA -+ PULYL - PUUB - PULYL)Z']' (A6)
1€{1,...,u} je{1,....0}
_ Pyy (A — B)].. A7
L) jellont) Pou (i (A7)
= Pyu)it (A — B)k; A.8
Sy sy |2 P4~ B 49
< Po), |(A— B ‘ A9
< phax o max, 2 [() i, |()kj } (A.9)
< Puy); A — B); A.10
< Sy i L o e, 1A= B A10
== dmax (A7 B) : max (PUU)zk’ - ’Vmaxdmax(A7 B) (All)
i€{1,...,u} —1
So(is a contraction in a complete metric space, and the sought-after conpstant.. O

It follows by Banach'’s fixed point theorem [107, Ch. 7] tidahas a unique fixed point that can
be reached by repeated application starting from an arbitrary eIem@m]h”.

This result is similar to that of Theorem 2.3.1 obtained by Zhu [238] and witsdhee restric-

tion onPyy, but this form provides a bound for the speed of convergence. de/meteff,tepo as the

initial value offy, £5 ™ as the value ofy; after thet™ step, and:5 **™ as the fixed point, then [107,

Ch. 7]

t

t t g tep 1 step0

(£, £551) < T (6700, £5°7) (A12)
max

179

so at each step the distance from the solution decreases by at ledst @ffgg,.x. Althoughff}teIOO

can be an arbitrary element i, 1]““, its choice does affect speed of convergence and monotonic-

ity. Algorithm 1 chooses; ™ = 0, therefore
A fstepoo step < 'Ymax . P Y:). A13
* ‘) — Ymax le?iaxau}(o L)Z] ()
JelL 0}

We can now get a bound on the number of steps to convergence forl @itapagation algorithm

that Useslya (£5 P, £5°7) as its termination condition with tolerance

7(1 — Ymax)

t <1 A.14
- Og’ymax) max (PULYL)U ()
te{1,...,u}
Jje{1,....0}
In (7(1 = Ymax)) — In ze?ll,a}fu} (PULYL)ij
_ je{1,....0} (A.15)
In Ymax

In fact, vymax a@s just computed is also the lowest bound in the spage = ([0, 1]“”, dmaX>
for function @, also called the Lipschitz constant [107]. This means that at least in thisydar

space;max IS the best bound on the convergence speedfor
Theorem A.2. The boundy,,. is the Lipschitz constant fdp in spaceS;,.x = ([0, 1]““, dmax).

Proof. We will show that for certain valued and B, the inequalities A.9 and A.10 (page 178) turn
into equalities. For equation A.9, the inequality becomes equalityif> By,; Vi € {1,...,u},j €
{1,...,¢}. For equation A.10, the inequality becomes equality if mattix B has all elements

eqgual to one another. So
A— B =0a"""= dnax(Q(A), Q(B)) = Ymax - dmax(4, B) = a (A.16)

which concludes the proof because any choice smallerthapn would invalidate the inequality.

O

In order to achieve rapid convergence, a small, and a strong maximum element®g, are
desirable; both describe, unsurprisingly, a graph that has strongections between labeled and

unlabeled nodes.

180

One problem with the bound computed above is that the restrictidqis quite harsh: each
unlabeled point must be directly connected to at least one labeled pdirttet@fter normalization,
the total weight connecting it to other unlabeled nodes is strictly less thanslwéirth searching

for a different theoretical bound. To that end, we define a diffemagttic over the same matrix set:
u l
ds(A,B) =Y > |Aij — Byjl (A.17)
i=1 j=1

The resulting spacéy, = ([O, 1]““, dg) allows a different bound and a different restrictionRyg.

This time sums over columns (as opposed to rows) of elememts iare involved.

u
Theorem A.3. If %nax} Z(PUU)“f = ~x < 1, then function? is a contraction in spacés, =
1€{l,...,u}t <
=1

([0, 1o, dg).

Proof.
u V4
ds(Q(A),Q(B)) = Z Z (PuuA + PurYr — PyyB — PyYp), (A.18)
i=1 j=1
u V4
=> > |Pw(4-B)]; (A.19)
i=1 j=1
u ¢ u
=3 > 1> (Pw)y (A= B)y, (A.20)
i=1 j=1 |k=1
u l u
<SS [P (4 - By (A21)
i=1 j=1 k=1
V4 u u
= Z Z ‘(A - B)kj’ Z (PUU)ik] (A.22)
=1 k=1 i=1
< sds(A, B) (A.23)
So(Q is a contraction irby; with vy, as a bound for its contraction constant. O

We can derive similar bounds on speed of convergence and maximum nafgieps forys,
as we did fory,.x. (However,ys is not easily shown as the Lipschitz constant.) Theorem A.1
tracks the largest error in each iteration, whereas Theorem A.3 tbdras global convergence by

tracking the sum of all errors.

181

Appendix B

EXPONENTIAL SPEEDUP OF LABEL PROPAGATION

In the following we show how speed of convergence in the label prdjgagalgorithm can
be accelerated exponentially. Our experiments do not use this definition steddrnuse in-place
label propagation which has a smaller working set. However, the algorithowlmay be of in-
terest when the graphs have relatively few vertices but are densatected. On a given input, if
original label propagation would convergerinsteps, the algorithm presented below converges in
approximatelylog n steps.

Let us consider an already reduced graph itibeled nodes andunlabeled nodes, and define

matrix S as follows:

|:]lé OEXu]
S = (B.1)

Py Pw

wherel’ is the identity matrix of sizé and0’*® is a matrix of siz& x u containing zeros. Itis easy

to verify that raisingS to the power ot yields
]lé Oqu

t
<Z P{IU) Pi. Py
=0

St = (B.2)

The bottom-left quadrant o' is exactlyfy aftert iterations of Zhu'’s label propagation algorithm
starting fromfy = 0, as shown in eq. 2.8. This means computing powers§ g an alternate

way of converging to the solution. Then the harmonic function would be ttterbeaeft quadrant of

S° = tliglo S*. Such a way of implementing label propagation would not be more attractilarfe

data sets given that the matrices involved are larger, were it not for a dhuipteucial observation:
large powers ofS can be computed exponentially faster by repeatedly squaring the intermediate

result, as opposed to just multiplying the intermediate resulbbyrhat way, by using matrix

182

multiplications, we can compu@zt instead ofS’—an exponential speedup.

s = ((((52)2)2>2...>2 (B.3)

This algorithm for computing large powers over a field was known as fek ba ancient Egypt
and is described in detail in Knuth's treatise [123, Vol. 2, pp. 465-4&H.the core iteration to

convergence is

S — §? (B.4)

which can be rewritten as
Ssw < (Sse + 1)Ssw (B.5)
Ssp — S%p (B.6)

whereSgyy is the bottom-left quadrant of (initially Py) andSsg is the bottom-right quadrant ¢f
(initially Pyy). The cost of the exponential speedup is that, in addition to the matrix multiplication
between a1 x u matrix and au x ¢ matrix (same cost as for the other algorithms), there is a need
to also perform a squaring ofiax u matrix. If Pyy is dense, in a straight implementation of matrix
product, the complexity of the algorithm jumps fraf(¢ - u?) to O(u?®), which is an important
change because we pursue scalability actoshile ¢ is often considered a constant. Howevet if

is relatively small or ifPyy is sparse by using a nearest-neighbors method of graph constructéion, th

benefits of exponential speedups can be enjoyed at an afforddtdecegt per step.

[1]

[2]

[3]

183

BIBLIOGRAPHY

Steven Abney. Semisupervised Learning for Computational Linguistic€hapman &

Hall/lCRC, 2007. ISBN 978-1584885597.

Marcel R. Ackermann, Johannegiher, and Christian Sohler. Clustering for metric and non-
metric distance measures. SDDA '08: Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithmgages 799-808, Philadelphia, PA, USA, 2008. Society
for Industrial and Applied Mathematics. URtttp://portal.acm.org/citation.
cfm?id=1347082.1347170

Shivani Agarwal. Ranking on graph data.l®ML '06: Proceedings of the 23rd international
conference on Machine learningages 25-32, New York, NY, USA, 2006. ACM Press.
ISBN 1-59593-383-2. URIhttp://doi.acm.org/10.1145/1143844.1143848

[4] Joshua Albrecht and Rebecca Hwa. A re-examination of machineitgpapproaches for

[5]

[6]

[7]

[8]

sentence-level MT evaluation. Proceedings of the 45th Annual Meeting of the Association
of Computational Linguisticpages 880-887, Prague, Czech Republic, June 2007. Associa-
tion for Computational Linguistics. URhttp://www.aclweb.org/anthology/P/

PO7/P07-1111

E. Alpaydin and C. Kaynak. Cascading classifidfgbernetika 34:369-374, 1998.

Y. Altun, I. Tsochantaridis, T. Hofmann, et al. Hidden Markov Saggp/ector Machines. In

Machine Learning International Workshop then Conferemodume 20, page 3, 2003.

Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervisedrtgng for

structured variables. IRroceedings of NIPS 12005.

S. Arya and D. Mount. ANN: library for approximate nearest neighlsearching.
URL http://www.cs.umd.edu/ ~mount/ANN/ , 2005.

184

[9] S. Arya and D.M. Mount.Algorithms for fast vector quantizatiorJniversity of Maryland,
1993.

[10] F. Aurenhammer. Voronoi diagrams—a survey of a fundamentaingéric data structure.

ACM Computing survey23(3), 1991.
[11] R.G. Bartle.The elements of integration and Lebesgue meadtitey, 1995.

[12] M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-sviped learning on
large graphs. COLT, 2004. URL http://www.cse.ohio-state.edu/tilde/
mbelkin/reg_colt.pdf

[13] M. Belkin, P. Niyogi, and V. Sindhwani. On Manifold RegularizatioRroceedings of the
Tenth International Workshop on Atrtificial Intelligence and Statistics (ATSZ005) 2005.

[14] Y. Bengio, R. Ducharme, and P. Vincent. A neural probabilistic lexgg model. INNIPS
2000.

[15] Yoshua Bengio. Probabilistic neural network models for sequedéitd. INIJCNN '00:
Proceedings of the IEEE-INNS-ENNS International Joint Conferemcéleural Networks
(IJCNN’00)-Volume 5pages 50-79, Washington, DC, USA, 2000. IEEE Computer Society.
ISBN 0-7695-0619-4.

[16] J.L. Bentley. Multidimensional divide-and-conqu€ommun. ACM23:214-229, 1980.

[17] J.L. Bentley and J.H. Friedman. A Survey of Algorithms and Data Strastior Range
SearchingACM Computing Survey41:397-409, 1979.

[18] J.L. Bentley and M.I. Shamos. Divide-and-conquer in multidimensispate. InProceed-
ings of the eighth annual ACM symposium on Theory of compytiages 220-230. ACM
New York, NY, USA, 1976.

[19] Jon Louis Bentley. Multidimensional binary search trees used fmrcdative searchingcom-
mun. ACM 18(9):509-517, 1975. URNttp://doi.acm.org/10.1145/361002.
361007 .

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

185

A.L. Berger, V.J. Della Pietra, and S.A. Della Pietra. A maximum entrggy@ach to natural

language processing.omputational Linguistic22(1):39-71, 1996.
P. Berkhin. Survey of clustering data mining techniques, 2002.

P. Bernaola-Galvan, R. Roman-Roldan, and J.L. Oliver. Compaaitisegmentation and
long-range fractal correlations in DNA sequencd3hysical Review E53(5):5181-5189,
1996.

P. Bernaola-Gakn, |. Grosse, P. Carpena, J.L. Oliver, R. RanRoldin, and H.E. Stanley.
Finding borders between coding and noncoding DNA regions by anpatsegmentation

method.Physical Review Letter85(6):1342-1345, 2000.

A. Beygelzimer, S. Kakade, and J. Langford. Cover treesdar@st neighbor. IRroceedings
of the 23rd international conference on Machine learnipgges 97-104. ACM New York,

NY, USA, 2006.

Paul E. Black. ‘inverted index’, from Dictionary of Algorithms andafa Structures, 2007.

URL http://www.nist.gov/dads/HTML/invertedIindex.html

Paul E. Black. ‘trie’, from Dictionary of Algorithms and Data Struaar 2007. URLhttp:
Ilwww.nist.gov/dads/HTML/trie.html

A. Blum and S. Chawla. Learning from labeled and unlabeled datey ugaph mincuts.

Proc. 18th International Conf. on Machine Learnimpges 19-26, 2001.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-trginin Pro-
ceedings of the eleventh annual conference on Computational learmiagtpages 92—-100.

ACM New York, NY, USA, 1998.

Avrim Blum, John Lafferty, Mugizi Robert Rwebangira, and Ragsar Reddy. Semi-
supervised learning using randomized mincutddRIL '04: Proceedings of the twenty-first
international conference on Machine Learnjmgage 13, New York, NY, USA, 2004. ACM
Press. ISBN 1-58113-828-5. URAhttp://doi.acm.org/10.1145/1015330.

1015429 .

186

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, and R.E. Tarjan. Time kdsifor selection.
JCSS7(4):448-461, 1973.

B.P. Bogert, MJR Healy, and J.W. Tukey. The quefrency alargfsisne series for echoes:
Cepstrum, pseudo-autocovariance, cross-cepstrum and sapkiegran Proceedings of the

Symposium on Time Series Analypiages 209-243, 1963.

B.E. Boser, |. Guyon, and V. Vapnik. A Training Algorithm for OptihMargin Classifiers.
Computational Learing Theorypages 144-152, 1992.

H. Bourlard and N. MorganConnectionist Speech Recognition: A Hybrid Approadwer
Academic Publishers, 1994.

A. Bowyer. Computing Dirichlet tessellationEhe Computer JournaR4(2):162-166, 1981.

Thorsten Brants and Alex FranaMeb 1T 5-gram Version. 1Linguistic Data Consortium,

Philadelphia, 2006. ISBN 1-58563-397-6.

JS Bridle and MD Brown. An experimental automatic word recogniticsteay. JSRU Re-
port, 1003, 1974.

J. Briét, P. Harremés, and F. Topsge. Properties of Classical and Quantum JenseameSha

Divergence ArXiv e-prints June 2008.

C. Callison-Burch, M. Osborne, and P. Koehn. Re-evaluatingdleeof BLEU in machine

translation research. Rroceedings of EACL2006.

W.M. Campbell, J.P. Campbell, D.A. Reynolds, E. Singer, and P.Ae$e@arrasquillo. Sup-
port vector machines for speaker and language recogni@omputer Speech & Language
20(2-3):210-229, 2006.

R. Cattoni, M. Danieli, V. Sandrini, and C. Soria. ADAM: the SI-TAlofpus of Annotated
Dialogues. InProceedings of LREC 2002, Las Palmas, Spad02.

M. Cettolo and M. Federico. Minimum error training of log-linear tratisia models. In

Proc. of the International Workshop on Spoken Language Translgiages 103-106, 2004.

187

[42] O. Chapelle, B. Sdblkopf, and A. Zien.Semi-Supervised LearninWIT Press, 2006.

[43] Nick Chater and Paul Vainyi. The generalized universal law of generalizatidournal of

Mathematical Psychology7:346—369, 2003.

[44] S. Chen, T. Gu, X. Tao, and J. Lu. Application based distance uneaent for context re-
trieval in ubiquitous computing. IMobile and Ubiquitous Systems: Networking & Services,

2007. MobiQuitous 2007. Fourth Annual International Conferencepages 1-7, 2007.

[45] S.F. Chen and J. Goodman. An empirical study of smoothing techniqué&mguage mod-
eling. Computer Speech and Languad8(4):359—-394, 1999.

[46] K. Cheng. Shepard’s Universal Law Supported by HoneghiaeSpatial Generalization.
Psychological Sciencd1(5):403-408, 2000.

[47] David Chiang, Steve Deneefe, Yee S. Chan, and Hwee T. NgorDeasability of transla-
tion metrics for improved evaluation and efficient algorithms. Phoceedings of the 2008
Conference on Empirical Methods in Natural Language Procesgiages 610-619, Hon-
olulu, Hawaii, October 2008. Association for Computational Linguistics. URip:

IlIwww.aclweb.org/anthology/D08-1064

[48] Jaeyoung Choi. A new parallel matrix multiplication algorithm on distributeztnory con-
current computers.Concurrency: Practice and Experienc&0(8):655-670, 1998. URL

citeseer.ist.psu.edu/article/choi97new.html

[49] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient acoesthod for similarity search
in metric spaces. IRroceedings of the International Conference on Very Large Datafase

pages 426-435. Institute of Electrical & Electronics Engineers (IEEE)7.

[50] P. Clarkson and R. Rosenfeld. Statistical language modeling usingNHg-Cambridge
toolkit. In Fifth European Conference on Speech Communication and Technd&Qm,

1997.

[51] M. Collins and N. Duffy. Convolution kernels for natural languagkdvances in Neural

Information Processing Systenis625-632, 2002.

188

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

T.H. Cormen.Introduction to AlgorithmsMIT press, 2001.

C. Cortes, P. Haffner, and M. Mohri. Rational kernels: Theamg algorithmsThe Journal

of Machine Learning Research:1035-1062, 2004.

D. Coughlin. Correlating Automated and Human Assessments of Ma®hamslation Qual-

ity. In Proceedings of MT Summit I)¥ages 63—70, 2001.

T. Cover and P. Hart. Nearest neighbor pattern classificalitleE Transactions on Informa-

tion Theory 13(1):21-27, 1967.

F. Cozman, |. Cohen, and M. Cirelo. Semi-supervised learning oftum@xmodels
and bayesian networks. IMCML '03: Proceedings of the twenty-second international
conference on Machine Learnin@003. URL http://citeseer.ist.psu.edu/

cozman03semisupervised.html

Fabio G. Cozman and Marcelo C. Cirelo. Semisupervised learnintass$itiers: Theory,
algorithms, and their application to human-computer interactiBEE Trans. Pattern Anal.
Mach. Intell, 26(12):1553-1567, 2004. ISSN 0162-8828. URtp://dx.doi.org/
10.1109/TPAMI.2004.127

Fabio G. Cozman and Ira Cohen. Unlabeled data can degrad#iciiss performance of
generative classifiers. Rroceedings of the Fifteenth International Florida Artificial Intelli-
gence Research Society Conferemagges 327—331. AAAI Press, 2002. ISBN 1-57735-141-
X.

Nello Cristianini and John Shawe-Taylofn Introduction to Support Vector Machines and
Other Kernel-based Learning Methad€ambridge University Press, March 2000. ISBN
0521780195.

A. Culotta and J. Sorensen. Dependency tree kernels for reketioaction. InProceedings
of the 42nd Annual Meeting on Association for Computational Linguiséissociation for

Computational Linguistics Morristown, NJ, USA, 2004.

189

[61] F.J. Damerau. A technique for computer detection and correctioretirgperrors.Commu-

nications of the ACM7(3):171-176, 1964.

[62] Hal Daunt Ill. From Zero to Reproducing Kernel Hilbert Spaces in Twelve Bagd._ess,

2004.

[63] S. Davis and P. Mermelstein. Comparison of parametric represergdtomonosyllabic
word recognition in continuously spoken sentendE&E Transactions on Acoustics, Speech

and Signal Processing@8(4):357-366, 1980.

[64] O. Delalleau, Y. Bengio, and N. Le Roux. Efficient non-parametritction induction in
semi-supervised learningProceedings of the Tenth International Workshop on Atrtificial

Intelligence and Statistics (AISTAT 2003D05.

[65] Olivier Delalleau, Yoshua Bengio, and Nicolas Le Roux. Largaesalgorithms. In Olivier
Chapelle, Bernhard Soétkopf, and Alexander Zien, editorSemi-Supervised Learning

pages 333-341. MIT Press, 2006.

[66] J.R. Deller, J.G. Proakis, and J.H.L. Hansdbiscrete-time processing of speech signals
Macmillan New York, 1993.

[67] Guo dong Guo, Anil K. Jain, Wei ying Ma, Hong jiang Zhang, andiSeMember. Learning
similarity measure for natural image retrieval with relevance feedb#€EE Transactions

on Neural Networksl13:811-820, 2002.

[68] Peter G. Doyle and Laurie J. Snell. Random walks and electric niewdan 2000. URL
http://arxiv.org/abs/math.PR/0001057

[69] Kai-bo Duan and S. Sathiya Keerthi. Which is the best multiclass SVM rdétidm empiri-
cal study. InProceedings of the Sixth International Workshop on Multiple Classifide8ys
pages 278-285, 2005.

[70] I.S. Duff, AM Erisman, and J.K. Reidirect methods for sparse matrice®xford University
Press, USA, 1986.

190

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

K. Duh and K. Kirchhoff. Beyond Log-Linear Models: Boostedriiinum Error Rate Train-
ing for N-best Re-ranking. IRroceedings of the 46th Annual Meeting of the Association for

Computational Linguistics (ACL), Columbus, Ohio, Ju?@08.

David S. Dummit and Richard M. FooteAbstract Algebra Wiley, 3 edition, July 2003.
ISBN 0471433349.

Bernardt Duvenhage. Using an implicit min/max kd-tree for doing iefficterrain line of
sight calculations. INFRIGRAPH '09: Proceedings of the 6th International Conference on
Computer Graphics, Virtual Reality, Visualisation and Interaction in Afripages 81-90,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-428-7. URittp://doi.acm.
0rg/10.1145/1503454.1503469

Raymond G. Gordon (editor)Ethnologue: Languages of the Warl&ummer Inst of Lin-

guistics; 15th edition, 2005.

G. Ekman. Dimensions of color visiodournal of Psychology38:467—474, 1954.

A. El Isbihani, S.K.O. Bender, and H. Ney. Morpho-syntactic l#caPreprocessing
for Arabic-to-English Statistical Machine Translation. Human Language Technology
Conf./North American Chapter of the Assoc. for Computational Linguisticaial Meeting
(HLT-NAACL), Workshop on Statistical Machine Translatipages 15-22, 2006.

D. M. Endres and J. E. Schindelin. A new metric for probability distidns. Infor-
mation Theory, IEEE Transactions 049(7):1858-1860, 2003. URAhbttp://www.

st-andrews.ac.uk/ ~dme2/density_metric.pdf

Zheng-Yu Niu et al. Word sense disambiguation using label prdmagdased semi-

supervised learning method. Rroceedings of ACLpages 395-402, 2005.

C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack P@tkovic, and W. Equitz. E
cient and effective querying by image conteddurnal of Intelligent Information Syster
(3):231-262, 1994.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

191

D.A. Field. Implementing Watson’s algorithm in three dimensions.Pfaceedings of the
second annual symposium on Computational geometiges 246-259. ACM New York,

NY, USA, 1986.

M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists Ptoceedings of the
twenty-third annual ACM symposium on Principles of distributed compugiages 50-59.
ACM New York, NY, USA, 2004.

S. Foo and H. Li. Chinese word segmentation and its effect on infawmeetrieval. Infor-

mation Processing and Manageme#®(1):161-190, 2004.

Cameron S. Fordyce. Overview of the IWSLT 2007 Evaluation Cagmpdn IWSLT, Trento,
Italy, October 2007.

Robert Frederking and Sergei Nirenburg. Three headsedtertihan one. Iitn Proceedings
of the fourth Conference on Applied Natural Language Processing PA®Y,_pages 95-100,
1994,

J.H. Friedman, J.L. Bentley, and R.A. Finkel. An algorithm for findirestomatches in
logarithmic expected timeACM Transactions on Mathematical Software (TONME3):209—
226, 1977.

M. Gales and P.C. Woodland. Mean and variance adaptation within thé&Mramework.

Computer, Speech and Langua896.

A. Ganapathiraju and J. Picone. Hybrid SVM/HMM architecturessfmrech recognition. In
Proceedings of NIP2000.

T. Gartner, P. Flach, and S. Wrobel. On graph kernels: Hasglresults and efficient alterna-

tives. Lecture notes in computer sciengages 129-143, 2003.

J.L. Gauvain and C.H. Lee. Maximum a-posteriori estimation for mulat@igaussian mix-
ture observations of markov chain&EE Transactions on Speech and Audio Processing

291-298, 1994.

192

[90] M.I. Gil". A nonsingularity criterion for matricesLinear Algebra and Its Application253

(1-3):79-87, 1997.

[91] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensiashashing. Inn
Proceedings of the 25th International Conference on Very Large Das2$1999.

[92] J. Goddard, AE Martinez, FM Martinez, and HL Rufiner. A compami®f string kernels
and discrete hidden Markov models on a Spanish digit recognition taskndmeering in
Medicine and Biology Society, 2003. Proceedings of the 25th Annuahéitenal Confer-
ence of the IEEEvolume 3, 2003.

[93] A. Goldberg and J. Zhu. Seeing stars when there aren’t many. s&naph-based semi-
supervised learning for sentiment categorizationdLT-NAACL Workshop on Graph-based

Algorithms for Natural Language ProcessiZp06.

[94] J.F. ®mez-Lopera, J. Mdrtez-Aroza, A.M. Robles-&tez, and R. Roan-Roldan. An anal-
ysis of edge detection by using the Jensen-Shannon divergdocenal of Mathematical

Imaging and Vision13(1):35-56, 2000.

[95] C. Grover and R. Tobin. Rule-based chunking and reusabilityPréiteedings of the Fifth

International Conference on Language Resources and EvaluatiosQLAR06) 2006.

[96] C. Grozea. Finding optimal parameter settings for high performance sense disambigua-

tion. Proceedings of Senseval-3 Workshap04.

[97] D. Gusfield. Algorithms on Strings, Trees, and Sequences: ComPcitence and Computa-
tional Biology, 1997.

[98] N. Guttman and H. I. Kalish. Discriminability and stimulus generalizatidriexp Psychgl
51:79-88, Jan 1956. ISSN 0022-1015.

[99] N. Habash, B. Dorr, and C. Monz. Challenges in Building an Ardinglish GHMT System
with SMT Components. IfProceedings of the 11th Annual Conference of the European

Association for Machine Translation (EAMT-2006ages 56—65, 2006.

193

[100] G.Hanneman and A. Lavie. Decoding with Syntactic and Non-Stintabrases in a Syntax-

Based Machine Translation SysteBISST-3page 1, 2009.

[101] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, afid@Rhirani. The elements
of statistical learning Springer New York, 2001.

[102] D. Haussler. Convolution kernels on discrete structune§echnical Report UCS-CRL-99-
10. UC 1999.

[103] T. Hofmann, B. Scbikopf, and A.J. Smola. Kernel methods in machine learniiyNALS
OF STATISTICS36(3):1171, 2008.

[104] Q. Hu, D. Yu, and Z. Xie. Neighborhood classifieExpert systems with applicatior34(2):
866-876, 2008.

[105] X. Huang and H.W. HonSpoken Language Processing: A Guide to Theory, Algorithm, and
System DevelopmerRrentice Hall PTR Upper Saddle River, NJ, USA, 2001.

[106] K.Imamura. Application of translation knowledge acquired by hirigal phrase alignment

for pattern-based MTProceedings of TMIpages 74-84, 2002.

[107] Vasile I. IstratescuFixed Point Theory, An IntroductiorD. Reidel, the Netherlands, 1981.
ISBN 90-277-1224-7.

[108] E. T. JaynesProbability Theory: The Logic of Scienc€ambridge University Press, April
2003. ISBN 0521592712.

[109] T. Joachims. Text categorization with support vector machinearnireg with many relevant
features. InEuropean Conference on Machine Learning (ECMtages 137-142, Berlin,

1998. Springer.

[110] T. Joachims. Transductive inference for text classificationgusimpport vector machines. In

Sixteenth International Conference on Machine Learnir#p9.

[111] Thorsten Joachims. Transductive inference for text classificaising support vector ma-
chines. In Ivan Bratko and Saso Dzeroski, editd®spceedings of ICML-99, 16th In-
ternational Conference on Machine Learnjngages 200-209, Bled, SL, 1999. Morgan

194

Kaufmann Publishers, San Francisco, US. URtp://citeseer.ist.psu.edu/

joachims99transductive.html

[112] Thorsten JoachimsLearning to Classify Text Using Support Vector Machines: Methods,
Theory and Algorithms Kluwer Academic Publishers, Norwell, MA, USA, 2002. ISBN
079237679X.

[113] B.H.Juang, L. Rabiner, and J. Wilpon. On the use of bandp&esni in speech recognition.
IEEE Transactions on Acoustics, Speech and Signal Proce<35(g):947-954, 1987.

[114] D. Karger and M. Ruhl. Finding nearest neighbors in growsirieted metrics, 2002. URL

citeseer.ist.psu.edu/karger02finding.html

[115] H. Kashima and A. Inokuchi. Kernels for graph classificationdBM Workshop on Active
Mining, volume 2002, 2002.

[116] H.Kashima, K. Tsuda, and A. Inokuchi. Kernels for grapgfernel methods in computational

biology, pages 155-170, 2004.

[117] A.M. Kibriya and E. Frank. An empirical comparison of exact msaneighbour algorithms.

Lecture Notes in Computer Sciend&02:140, 2007.

[118] K. Kilanski, J. Malkin, X. Li, R. Wright, and J. Bilmes. The Vocal gk data collection

effort and vowel corpus. linterspeechSeptember 2006.

[119] Margaret King. Evaluating natural language processing systeédesnmun. ACM39(1):
73-79, 1996. ISSN 0001-0782. URittp://doi.acm.org/10.1145/234173.
234208 .

[120] K. Kirchhoff and M. Yang. The University of Washington Macéifranslation System for
the IWSLT 2007 Competition. IRroc. of the International Workshop on Spoken Language
Translation 2007.

[121] J.M. Kleinberg. Two algorithms for nearest-neighbor search ih dimmensions. IfProceed-
ings of the twenty-ninth annual ACM symposium on Theory of computaues 599-608.
ACM New York, NY, USA, 1997.

195

[122] Kevin Knight and Ishwar Chander. Automated postediting of docusae In AAAI '94:

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Proceedings of the twelfth national conference on Attificial intelligence iyppages 779—-
784, Menlo Park, CA, USA, 1994. American Association for Artificial Iigence. ISBN
0-262-61102-3.

Donald E. Knuth.The Art of Computer Programming\ddison-Wesley, 1998.

P. Koehn. Europarl: A parallel corpus for statistical machinestedion. InMachine Trans-

lation Summit Xpages 79-86, Phuket, Thailand, 2005.

P. Koehn. Pharaoh: a beam search decoder for phrasetistatistical machine translation

models.Washington DC2004.

P. Koehn, F.J. Och, and D. Marcu. Statistical phrase-basesdldteon. InProceedings of
the 2003 Conference of the North American Chapter of the AssociationdimpGtational
Linguistics on Human Language Technology-Volumpabes 48-54. Association for Com-

putational Linguistics Morristown, NJ, USA, 2003.

Philipp Koehn and Christof Monz, editorBroceedings on the Workshop on Statistical Ma-
chine Translation Association for Computational Linguistics, New York City, June 2006.

URL http://www.aclweb.org/anthology/W/WO06/W06-15

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-BuyrMarcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, RichamsZ€hris Dyer,
Ondrej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Omames toolkit for sta-

tistical machine translation. IACL, 2007.

Tuomo Korenius, Jorma Laurikkala, and Martti Juhola. On prina@panponent analysis,
cosine and Euclidean measures in information retrid¢nfdrmation Scienced77(22):4893—
4905, 2007. ISSN 0020-0255. URittp://www.sciencedirect.com/science/
article/B6VOC-4NS2GMR-3/2/5392027024723e691b0c624af 9eab5f2f

H. Kucera and W.N. FrancisComputational analysis of present-day American English

Brown University Press Providence, 1967.

196

[131] J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional randomldie: representation and clique
selection. InProceedings of the twenty-first international conference on Machimaileg

ACM New York, NY, USA, 2004.

[132] Elina Lagoudaki. Translation Memory systems: Enlightening userspective. Key finding
of the TM Survey 2006 carried out during July and August 2006. feethreport, Imperial

College London, Translation Memories Survey, 2006.

[133] P.W. Lamberti and A.P. Majtey. Non-logarithmic Jensen—-Shann@rgince.Physica A:
Statistical Mechanics and its Applicatigré?29(1-2):81-90, 2003.

[134] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprofn G. Orr and Muller K.,
editors,Neural Networks: Tricks of the trad&pringer, 1998.

[135] Y.K.Lee and H.T. Ng. An empirical evaluation of knowledge sosted learning algorithms

for word sense disambiguation. Rroceedings of EMNLPpages 41-48, 2002.

[136] VY.K. Lee, H.T. Ng, and T.K. Chia. Supervised Word Sense Disaunatign with Support
Vector Machines and Multiple Knowledge Sourc8&NSEVAL-32004.

[137] G. Leech, P. Rayson, and A. Wilsoword frequencies in written and spoken English: based
on the British National CorpusLongman, London, 2001.

[138] C. Leslie and R. Kuang. Fast Kernels for Inexact String MaghilECTURE NOTES IN
COMPUTER SCIENCHpages 114-128, 2003.

[139] C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: agsk@émnel for svm protein
classification.Pac Symp Biocompupages 564-575, 2002. ISSN 1793-5091. URip:
/Iview.ncbi.nlm.nih.gov/pubmed/11928508

[140] C. Leslie, E. Eskin, J. Weston, and W.S. Noble. Mismatch String &erior SVM Protein
Classification. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTphties
1441-1448, 2003.

[141] V.I. Levenshtein. Binary Codes Capable of Correcting Deletibmsertions and Reversals.
In Soviet Physics Doklagyolume 10, page 707, 1966.

197

[142] D.D. Lewis. Naive (Bayes) at forty: The independence assiamin information retrieval.

Lecture Notes in Computer Sciend@98:4—-18, 1998.

[143] W. Li. Random texts exhibit Zipf's-law-like word frequency distrtton. IEEE Transactions
on Information Theory38(6):1842—-1845, 1992.

[144] Xiao Li. Regularized Adaptation: Theory, Algorithms and ApplicatidAsD thesis, Univer-
sity of Washington, 2007.

[145] H. T. Lin, C. J. Lin, and R. C. Weng. A Note on Platt’s Probabilistictgutis for Support
Vector Machines. Technical report, National Taiwan University, MB92 URL http:
/lwork.caltech.edu/ ~ htlin/publication/doc/plattprob.pdf

[146] J. Lin. Divergence measures based on the Shannon entElpl. Transactions on Informa-

tion theory 37(1):145-151, 1991.
[147] Marc Lipson.Schaum’s Easy Outline of Discrete MathematigeGraw-Hill, 2002.

[148] Ning Liu, Benyu Zhang, Jun Yan, Qiang Yang, Shuicheng Ydrergy Chen, Fengshan Bai,
and Wei-Ying Ma. Learning similarity measures in non-orthogonal spaneCIKM '04:
Proceedings of the thirteenth ACM international conference on Informatimhknowledge
managemenpages 334-341, New York, NY, USA, 2004. ACM. ISBN 1-58112H.. URL
http://doi.acm.org/10.1145/1031171.1031240

[149] H. Lodhi, J. Shawe-Taylor, and N. Cristianini. Text classificatiming string kernels. In
Proceedings of NIP002.

[150] W. Macherey, F.J. Och, I. Thayer, and J. Uszkoreit. Lattizgeld minimum error rate training
for statistical machine translation. Froceedings of the 2008 Conference on Empirical

Methods in Natural Language Processing (EMNLP), Hongl@08.

[151] Christopher D. Manning and Hinrich SchtzBoundations of Statistical Natural Language
Processing MIT Press, June 1999. ISBN 0262133601.

[152] D. Marcu. Towards a unified approach to memory- and statisticsdebmachine translation.

In Proceedings of ACL2001.

198

[153] D. Marcu and W. Wong. A phrase-based, joint probability modelstatistical machine
translation. InProceedings of EMNLR/olume 2, 2002.

[154] Alvin Martin and Mark Przybocki.2004 NIST Speaker Recognition Evaluatidinguistic
Data Consortium, Philadelphia, 2006.

[155] A. Martins. String kernels and similarity measures for information redfielechnical report,

Technical report, Priberam, Lisbon, Portugal, 2006.

[156] H. Maruyana and H. Watanabe. Tree cover search algorithexomple-based translation.

In Proceedings of TMIpages 173-184, 1992.

[157] W.J. McGuire. A multiprocess model for paired-associate leardiogenal of Experimental

Psychology62:335—-347, 1961.

[158] M.L. Meréndez, J.A. Pardo, L. Pardo, and M.C. Pardo. The Jensen-Shdivesgence.
Journal of the Franklin Institute334(2):307-318, 1997. ISSN 0016-0032.

[159] J. Mercer. Functions of Positive and Negative Type, and Theimection with the Theory
of Integral EquationsProceedings of the Royal Society of London. Serje33659):69-70,
19009.

[160] Mara Luisa Mid, Jo€ Oncina, and Enrique Vidal. A new version of the nearest-neighbour
approximating and eliminating search algorithm (aesa) with linear prepingetssie and
memory requirementsPattern Recogn. Lett15(1):9-17, 1994. ISSN 0167-8655. URL
http://dx.doi.org/10.1016/0167-8655(94)90095-7

[161] R. Mihalcea, T. Chklovski, and A. Killgariff. The Senseval-3 Esig Lexical Sample Task.
In Proceedings of ACL/SIGLEX SensevakG04.

[162] George A. Miller and Patricia E. Nicely. An analysis of perceptwaifusions among some
english consonantd he Journal of the Acoustical Society of Ameri2@(2):338-352, 1955.
URL http://dx.doi.org/10.1121/1.1907526

[163] Thomas P. Minka. Bayesian inference, entropy, and the multinonstaibdition, 2007. URL
http://citeseer.ist.psu.edu/171980.html

199

[164] S. Mohammad and T. Pedersen. Complementarity of Lexical and Sirpptacsic Features:

The SyntalLex Approach to SensevalFBoceedings of the SENSEVAL2804.

[165] M. Mohri. Finite-state transducers in language and speech ssimge Computational lin-

guistics 23(2):269-311, 1997.

[166] Andrew Moore. A tutorial on kd-trees. Technical Report 208iversity of Cambridge, 1991.

URL http://www.cs.cmu.edu/ ~awm/papers.html . Extract from PhD Thesis.

[167] Pedro J. Moreno, Purdy P. Ho, and Nuno Vasconcelos. A Kekihaibler divergence based

[168]

[169]

[170]

[171]

[172]

[173]

[174]

kernel for SVM classification in multimedia applications.linAdvances in Neural Informa-

tion Processing Systems.IIT Press, 2003.

Arnold Neumaier. Solving ill-conditioned and singular linear systemsutérial on regular-

ization. SIAM Review40:636—666, 1998.

A.Y. Ng. Feature selectiod,; vs. L, regularization, and rotational invariancACM Inter-

national Conference Proceeding Serigf04.

NIST. Automatic evaluation of machine translation quality using n-graroccurrence
statistics. NIST, 2002. URL http://www.nist.gov/speech/tests/mt/doc/
ngram-study.pdf

N.Young. An Introduction to Hilbert SpacesCambridge University Press, 1988. ISBN
978-0521337175.

F.J. Och. Minimum Error Rate Training in Statistical Machine TranslatiarProceedings
of the 41st Annual Meeting on Association for Computational Linguistitsav® 1, pages

160-167. Association for Computational Linguistics Morristown, NJ, UZX)3.

F.J. Och and H. Ney. Discriminative training and maximum entropy mdodestatistical ma-
chine translation. IfProc. of the 40th Annual Meeting of the Association for Computational

Linguistics (ACL) volume 8, 2002.

F.J. Och and H. Ney. Giza++: Training of statistical translation modBlsponible sur

http://mww. fjoch. com/GIZA++. htmPR003.

200

[175] F.J. Och and H. Ney. The alignment template approach to statisticalimeatchnslation.
Computational Linguistics30(4):417-449, 2004.

[176] F.J. Och, C. Tillmann, H. Ney, et al. Improved alignment models fdissitzal machine
translation. InProc. of the Joint SIGDAT Conf. on Empirical Methods in Natural Laagg)
Processing and Very Large Corpqnaages 20-28, 1999.

[177] M.T. Orchard. A fast nearest-neighbor search algorithmAdaustics, Speech, and Signal
Processing, 1991. ICASSP-91., 1991 International Conferencpages 2297-2300, 1991.

[178] B. Pang and L. Lee. Seeing stars: Exploiting class relationshigefdiment categorization

with respect to rating scales. Rroceedings of the AGlpages 115-124, 2005.

[179] B. Pang and L. Lee. A sentimental education: Sentiment analysig sisbjectivity summa-

rization based on minimum cutBroceedings of the AClpages 271-278, 2004.

[180] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing ZHau:BA method for auto-
matic evaluation of machine translation.AGL '02: Proceedings of the 40th Annual Meeting
on Association for Computational Linguistiggages 311-318, Morristown, NJ, USA, 2001.

Assaciation for Computational Linguistics.

[181] M. Paul, E. Sumita, and S. Yamamoto. Example-based Rescoring tigtiSt Machine
Translation OutputProc of the HLTNAACL, Companion Volunpages 9-12, 2004.

[182] J. Platt. Probabilistic outputs for support vector machines and aisopa to regularized

likelihood methodsAdvances in Large Margin Classifie8174, 1999.

[183] M. Przybocki, G. Sanders, and A. Le. Edit Distance: A Metric ¥tachine Translation
Evaluation. InActes de LREC 2006 {5international Conference on Language Resources

and Evaluation)pages 2038-2043, 2006.

[184] Taylor R. A users guide to measure-theoretic probabiityirnal of the American Statistical
Association 98:493-494, January 2003. URittp://ideas.repec.org/a/bes/
jnlasa/v98y2003p493-494.html

[185] C. Rao. Differential Geometry in Statistical Interferend®dS-Lecture Notesl0:217, 1987.

201

[186] A. Ratnaparkhi. A maximum entropy model for part-of-speech itagg In Proceed-
ings of EMNLR pages 133-142, 1996. URMttp://citeseer.ist.psu.edu/

ratnaparkhi9émaximum.htmi

[187] M. Reed and B. SimonFunctional Analysis. Revised and enlarged Editiormlume | of

Methods of Modern Mathematical Physidscademic Press, San Diego, 1980.

[188] JD Reiss, J. Selbie, and MB Sandler. OPTIMISED KD-TREE IND¥G OF MULTIME-
DIA DATA. In Digital Media Processing for Multimedia Interactive Services: Proceedaigs
the 4th European Workshop on Image Analysis for Multimedia Interactimecgg page 47.
World Scientific, 2003.

[189] K. Rieck, P. Laskov, and S. Sonnenburg. Computation of similaritgsmes for sequential
data using generalized suffix treesdvances in Neural Information Processing Systelfis
1177, 2007.

[190] Ralil Rojas.Neural Networks: A Systematic IntroductidBpringer, 1996.

[191] R. Ronan-Roldan, P. Bernaola-Gahn, and J.L. Oliver. Sequence compositional complexity
of DNA through an entropic segmentation methdehysical Review Letter80(6):1344—
1347, 1998.

[192] R. Rdnngren and R. Ayani. A comparative study of parallel and sequent@ity queue
algorithms. ACM Transactions on Modeling and Computer Simulation (TOMAC&):
157-209, 1997.

[193] F. Sadat, H. Johnson, A. Agbago, G. Foster, R. Kuhn, Jtijand A. Tikuisis. PORTAGE:
A Phrase-based Machine Translation SysteBuilding and Using Parallel Texts: Data-

Driven Machine Translation and Beyon2i005.

[194] G. Salton and M.J. McGillintroduction to modern information retrievaMcGraw-Hill, Inc.

New York, NY, USA, 1986.

[195] Gerard Saltonintroduction to Modern Information Retrieval (McGraw-Hill Computer Sci-

ence Series)McGraw-Hill Companies, September 1983. ISBN 0070544840.

202

[196] M. Santaholma. Grammar sharing techniques for rule-based multilingLtRlsystems. In

Proceedings of NODALIDApages 253—-260. Citeseer, 2007.

[197] J. Schroeder and P. Koehn. The University of Edinburghe®y<escription for IWSLT
2007. InProc. of the International Workshop on Spoken Language Trans|a2iay .

[198] F. Sha and L. Saul. Large margin Gaussian mixture modeling for fibatassification and

recognition. InProceedings of ICASSPages 265-268, 2006.

[199] Marvin Shapiro. The choice of reference points in best-matchddéechiing. Comm. ACM
20(5):339-343, 1977. ISSN 0001-0782. URILtp://doi.acm.org/10.1145/
359581.359599

[200] D. Shen, J. Zhang, J. Su, G. Zhou, and C.L. Tan. Multi-critedsed active learning
for named entity recognition. IRroceedings of the 42nd Annual Meeting on Association
for Computational LinguisticsAssociation for Computational Linguistics Morristown, NJ,
USA, 2004.

[201] R.N. Shepard. Toward a universal law of generalization fossal science Science237:
1317-1323, 1987.

[202] Jonathon Shlens. A tutorial on principal component analysisember 2005. URIhttp:

Ilwww.snl.salk.edu/ ~ shlens/pub/notes/pca.pdf

[203] A.W.M. Smeulders and R. Jaitmage databases and multi-media sear@Yorld Scientific,
1997.

[204] Ivan Smith. Historical Notes about the Cost of Hard Drive Stor8gace. URLhttp:
/lalts.net/ns1625/winchest.html , 2004.

[205] A. Solomonoff, C. Quillen, and W.M. Campbell. Channel compensdtoisVM speaker
recognition. INODYSSEYO04-The Speaker and Language Recognition Worldzh

[206] R. Sproat and T. Emerson. The First International Chinesed\8a@gmentation Bakeoff.
In Proceedings of the Second SIGHAN Workshop on Chinese LanguaegesBing pages
133-143. Sapporo, Japan: July, 2003.

203

[207] David McG. Squire. Learning a similarity-based distance measurenfage database or-
ganization from human partitionings of an image sé&pplications of Computer Vision,
IEEE Workshop on0:88, 1998. URLhttp://doi.ieeecomputersociety.org/
10.1109/ACV.1998.732863

[208] GW Stewart. Gershgorin Theory for the Generalized Eigenvalabl®n Ax=\Bx. Mathe-
matics of Computatigrpages 600-606, 1975.

[209] A. Stolcke. SRILM-an extensible language modeling toolkitS&venth International Con-
ference on Spoken Language ProcessiSEA, 2002.

[210] A. Stolcke, F. Grezl, M-Y Hwang, X. Lei, N. Morgan, and D. Ygri. Cross-domain and
cross-language portability of acoustic features estimated by multilayergtemas. InPro-

ceedings of ICASSPages 321-324, 2006.

[211] C. Strapparava, A. Gliozzo, and C. Giuliano. Pattern abstractidmesm similarity for word
sense disambiguation: IRST at SENSEVALRoc. of SENSEVAL;®ages 229-234, 2004.

[212] J. Suzuki, Y. Sasaki, and E. Maeda. Kernels for structuragraldanguage data. IRroc. of
the 17th Annual Conference on Neural Information Processing Sy¢iiR§2003)2003.

[213] Zhuoran Wang;John Shawe-Taylor;Sandor Szedmak. Kergedssion based machine trans-
lation. InProceedings of NAACL/HL pages 185-188. Assaociation for Computational Lin-
guistics, 2007. URILhttp://www.aclweb.org/anthology/N/NO7/NO7-2047

[214] Martin Szummer and Tommi Jaakkola. Partially labeled classification wittkdarandom
walks. InAdvances in Neural Information Processing Systewmotume 14, 2001. URL

http://citeseer.ist.psu.edu/szummer02partially.html

[215] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov netgo Advances in neural

information processing system$:51, 2004.

[216] O. Taussky. A recurring theorem on determinaimerican Mathematical Monthlypages

672-676, 1949.

204

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

F. Topsge. Jenson-Shannon divergence and norm-basedis of discrimination and vari-

ation. Preprint, 2003.

loannis Tsochantaridis, Thomas Hofmann, Thorsten Joachimds{asemin Altun. Support
vector machine learning for interdependent and structured outpugspetCML '04: Pro-
ceedings of the twenty-first international conference on Machine liegrpage 104, New
York, NY, USA, 2004. ACM Press. ISBN 1-58113-828-5. URttp://doi.acm.org/
10.1145/1015330.1015341

Nicola Ueffing, Gholamreza Haffari, and Anoop Sarkar. Serpesuised model adapta-
tion for statistical machine translatioMachine Translation21(2):77-94, June 2007. URL
http://dx.doi.org/10.1007/s10590-008-9036-3

J.D. Valois. Lock-free linked lists using compare-and-swapRrbteedings of the fourteenth
annual ACM symposium on Principles of distributed compuytiages 214-222. ACM New
York, NY, USA, 1995.

T. Veale and A. Way. Gaijin: a template-based bootstrapping apprimaexample-based

machine translation. IRroceedings of News Methods in Natural Language Proces$94y .

E. Vidal. New formulation and improvements of the nearest-neighbpproximating and

eliminating search algorithm (AESARattern Recognition Letterd5(1):1-7, 1994.

S. V. N. Vishwanathan and Alexander J. Smola. Fast kerneliimg and tree matching. In

Advances in Neural Information Processing Systempages 569-576. MIT Press, 2003.

I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.P. Seidel. Fastsurface ray tracing
using implicit kd-treeslEEE Transactions on Visualization and Computer Graphidg5):

562-572, 2005.

R. Wang, X. Wang, Z. Chen, and Z. Chi. Chunk Segmentation ofé3le Sentences Using a
Combined Statistical and Rule-based Approach (CSR#&).J. Comp. Proc. Orie. Lang20
(02n03):197-218, 2007.

205

[226] T. Watanabe and E. Sumita. Example-based decoding for statistichlmadranslation. In

Machine Translation Summit |)ages 410-417, 2003.

[227] DF Watson. Computing the n-dimensional Delaunay tessellation with afiptida \oronoi

polytopes*.The computer journalk4(2):167-172, 1981.

[228] K. Yamada and K. Knight. A decoder for syntax-based statistical M Proceedings of the
40th Annual Meeting on Association for Computational Linguispegies 303-310. Associ-

ation for Computational Linguistics Morristown, NJ, USA, 2001.

[229] D. Yarowsky. Unsupervised word sense disambiguation rivadingervised methods. In
Proceedings of the 33rd annual meeting on Association for Computatigmgistics pages

189-196. Association for Computational Linguistics Morristown, NJ, UB395.

[230] C.Yin, S. Tian, S. Mu, and C. Shao. Efficient computations ofpgdpstring kernels based
on suffix kernel.Neurocomputing71(4-6):944-962, 2008.

[231] H.P. Zhang, H.K. Yu, D.Y. Xiong, and Q. Liu. HHMM-based Chiedsexical Analyzer
ICTCLAS. InProceedings of Second SIGHAN Workshop on Chinese LanguagesBing
pages 184-187, 2003.

[232] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B.@kbpf. Learning with local and global

consistencyAdvances in Neural Information Processing Systetis321-328, 2004.

[233] Q. Zhu, A. Stolcke, B. Chen, and N. Morgan. Using MLP feagureSRI's conversational
speech recognition system. Rroceedings of Eurospeegbages 2141-2144, 2005.

[234] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeddd dith label propa-
gation. Technical report, CMU-CALD-02, 2002. URittp://citeseer.ist.psu.

edu/article/zhu02learning.html

[235] X. Zhu and Z. Ghahramani. Towards semi-supervised classificatith Markov random
fields. Technical report, Technical Report CMU-CALD-02-106)rriggie Mellon Univer-
sity, 2002.

206

[236] X. Zhu and Z. Ghahramani. Towards semi-supervised learningBattzmann machines.

Technical report, Technical report, Carnegie Mellon University,2200

[237] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised legmasing Gaussian fields and

harmonic functionsICML-03, 20th International Conference on Machine Learnidg03.

[238] Xiaojin Zhu. Semi-Supervised Learning with GraphihD thesis, Carnegie Mellon Univer-
sity, 2005. CMU-LTI-05-192.

[239] Xiaojin Zhu. Semi-supervised learning literature survey. Techieport 1530, Computer
Sciences, University of Wisconsin-Madison, 2005. URtp://www.cs.wisc.edu/

~ jerryzhu/pub/ssl_survey.pdf

[240] G. Zipf. Selective Studies and the Principle of Relative FrequsiiigieanguageMIT Press
1932.

[241] Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. An efficiemtaxring technique for full
text databases. MLDB '92: Proceedings of the 18th International Conference on Vargé
Data Basespages 352—-362, San Francisco, CA, USA, 1992. Morgan KaufrRablishers
Inc. ISBN 1-55860-151-1.

