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Abstract

Scalable Graph-Based Learning Applied to Human Language Technology

Andrei Alexandrescu

Chair of the Supervisory Committee:
Associate Research Professor Katrin Kirchhoff

Electrical Engineering

Graph-based semi-supervised learning techniques have recently attracted increasing attention as a
means to utilize unlabeled data in machine learning by placing data points in a similarity graph.
However, applying graph-based semi-supervised learning to natural language processing tasks
presents unique challenges. First, natural language features are often discrete and do not readily re-
veal an underlying manifold structure, which complicates the already empirical graph construction
process. Second, natural language processing problems often use structured inputs and outputs that
do not naturally fit the graph-based framework. Finally, scalability issueslimit applicability to large
data sets, which are common even in modestly-sized natural language processing applications. This
research investigates novel approaches to using graph-based semi-supervised learning techniques
for natural language processing, and addresses issues of distancemeasure learning, scalability, and
structured inputs and outputs.
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Chapter 1

INTRODUCTION

Machine Learning methods based on global similarity graphs can be used successfully against
realistically-sized Human Language Technology tasks addressing problems in Natural Language
Processing, Automatic Speech Recognition, and Machine Translation.

There are good reasons for pursuing such an endeavor. We are applying Graph-Based
Learning—a novel machine learning method sporting many desirable properties—to concrete prob-
lems in the vast, dynamic, and largely unsolved fields of Natural Language Processing, Automatic
Speech Recognition, and Machine Translation. We will refer to these fieldscollectively as Hu-
man Language Technology, in short HLT. Although various algorithms forlearning with similarity
graphs have been proposed, they have been largely confined to highlyproblem-specific formulations
and small data sets. This dissertation proposes generalized, systematic, and scalable applications of
graph-based learning to a large variety of HLT tasks—and possibly beyond.

1.1 What is Human Language Technology?

Our daily lives are more structured, sophisticated, and informationally richer than probably at any
time in history. We have become so used to the notions of rapid change and progress, it is hard to
imagine that most previous generations of people lived through long periods of relative stagnation.
Discussing whether that all is for our own good is beyond the scope of thisdissertation, but one thing
is clear—one fundamental cause of today’s rate of progress is the advent of automated computing.

Computing has pervaded our daily lives in many ways, starting from the obvious such as per-
sonal computers and the Internet, and ending with the many small embedded systems residing in
today’s music players, telephones, and kitchen appliances. Clearly computers have matched and ex-
ceeded human capabilities at sheer numeric computation and information storage, and also at certain
specialized tasks that were once considered the monopoly of human intelligence—such as planning,
proving theorems, or playing chess. Many interesting and successful applications of automated com-
puting, however, include the human as the essential participant in an asymmetric exchange: content
on the hugely informative Internet is mostly generated by humans; popular systems such as the Web,
email, instant messaging, social websites, or smart telephony, do little more thanboringly brokering
interaction between human beings, who do the “interesting” part. One key piece in expanding the
capabilities of computers in such directions is having them understand and exchange information in
natural language. This is the object of the vast field of Human Language Technology (HLT).

Improving on automated processing of human language is not only helping human-machine
interfacing, but more importantly makes a wealth of human-produced information available for au-
tomated processing. Such processing would reinforce a learning cycle that further equips machines
with the capability to acquire ever more detailed and subtler aspects of human culture. However,
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priming this cycle poses a chicken-and-egg problem. Human language is as complex as the human
psyche itself. Language is the main vehicle we use to understand the world, toconceptualize new
ideas, and most often to convey them. Since to this day we have not seeded Artificial Intelligence,
and since true human language understanding likely requires full-fledgedhuman-like intelligence,
Human Language Technology is one of the most formidable challenges that computing is facing to-
day. HLT is colloquially called “AI-complete,” hinting to the fact that achievinghuman-grade HLT
is tantamount to achieving human-grade AI.

Due to its size and complexity, the field of HLT is divided in many highly specializedsubfields.
Within the main fields of Automatic Speech Recognition, Machine Translation, andNatural Lan-
guage Processing, HLT subareas under active research today include parsing, speaker detection,
document and speech summarization, speaker detection, word sense disambiguation, named entity
detection, question answering, coreference resolution, part-of-speech tagging, information extrac-
tion, and more.

The initial research enthusiasm underestimated the size of the problem, but after a boom and bust
cycle, the field of HLT is undergoing an accelerated evolution. Even the mostskeptical observer
would have to admit—sometimes with annoyance—that automated HLT systems are percolating
through the fabric of our society. Speech interfaces for automated phone dialog systems not only
make it more difficult to reach an actual human customer service representative, but act increasingly
less distinguishable from one; combining speech recognition and automated translation has also led
to early automated two-way telephone translation systems; myriads of automated systems connected
to the Internet parse and process text pages, answer questions writtenin natural language, or produce
intelligible translations of web pages and other texts (albeit sometimes with humorous results); and
the list could continue. While we are far from anything like a true solution, these steps show that
we do have an attack on the problem.

Several factors are conditioning this recent accelerated progress. The increased availability of
computing power, the advent of the Internet, the ubiquity of broadband communication, and the
exponential improvement of storage in both density and affordability [204]have enabled produc-
tion of text data in enormous quantities [35], with speech data closely followingsuit [154]. In a
concurrently-evolving trend in HLT, statistical methods outpaced symbolic/rule-based methods in
applicability and performance [105, Ch. 1]. (Rules are, however, making a comeback, just not as
whole systems, but as aides and complements to statistical systems [196, 225, 95].)

Such data abundance would bode well for the data-hungry statistical HLTapproaches, except
that many statistical HLT applications require model training withlabeled (annotated) data. In
contrast with the readily-available raw data, labeled data is labor-intensive, slow to produce, and
expensive to obtain. Scarcity of labeled data is most acutely felt for less known languages, such as:

• languages without writing systems (purely spoken). Of the world’s estimated 7000 languages,
only one third have writing systems [74];

• languages without standardized writing systems. Scripts of such languages have a lot of
variation, which requires extensive text normalization and therefore further slows down data
acquisition;

• dialects and vernacular languages;
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• non-mainstream languages (languages offering little economic or political incentive to HLT
system builders).

Today’s strong informational globalization trends warrant developing HLT systems that can
work with languages and domains offering little annotated data relatively to the quantity of un-
annotated data. This setup is directly addressed by semi-supervised learning methods, which we
briefly describe below.

Traditional statistical learning methods use asupervisedapproach, meaning that a model’s pa-
rameters are adjusted (trained) by using labeled data, i.e., data for which both inputs (also known
asfeatures) and correct outputs (often referred to aslabels) are known. After the model has been
trained, it is able to predict correct labels when presented with formerly-unseen features, as long as
there exists correlation between features and labels and the correlation is the same for both training
and test data. Another statistical learning method, in a way converse to supervised learning, isunsu-
pervisedlearning. In an unsupervised setup, labels are not known for neither training nor test data.
The system, however, infers labels by discovering patterns and clustersin feature space. There is
no formal distinction between training and test data. Finally, a third method calledsemi-supervised
learning borrows traits from both supervised and unsupervised learning: like in supervised learning,
labeled samples are present; and like in unsupervised learning, unlabeled(test) data is used during
the learning process. Unlabeled data hints the learning system with informationabout density of
data in feature space. If density of data is high around specific labels andrelatively low around deci-
sion boundaries (assumption that is sometimes, but not always, applicable), then unlabeled samples
may help the labeling process. Section § 2.2 includes a formal definition and anin-depth discussion
of semi-supervised learning, including its enabling assumptions.

Semi-supervised learning methods include self-training [229], co-training[28], transduc-
tive Support Vector Machines [110], and graph-based methods [239, § 6]. Our work builds on
the latter. Some properties of interest in Graph-Based Learning (GBL) include few parameters to
tune, global consistency over train and test data, tractable global optimum, inherently adaptive mod-
eling, solid intuition behind the learning process, and most importantly, excellentresults with the
setup of little train data and abundant test data (a situation common to many HLT applications, as
discussed above). These advantages would make GBL an excellent matchfor many of today’s chal-
lenging machine learning tasks in Human Language Technology, were it notfor its disadvantages:
the burden of choosing an appropriate similarity measure in complicated feature spaces, exacerbated
scalability issues (quadratic time complexity in the total data size in a straightforward implemen-
tation), problems in addressing disparity of train and test data, the need to load the entire data set
in-core prior to computation, and the difficulty to parallelize (an increasingly prominent require-
ment from basic algorithms in wake of today’s serial computing crisis). This work first provides
the appropriate background information and then addresses these difficulties from both theoretical
and practical perspectives, with a focus on getting principled, theoretically sound solutions to work
on realistic tasks in HLT—a heavily experimental field. Experiments conductedshow how the pro-
posed solutions properly tackle the respective challenges, and the obtained results illustrate how the
improved graph-based algorithms perform significantly better than state-of-the art machine learning
systems for HLT.
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Organization The rest of this dissertation is structured as follows. Chapter 2 introducessemi-
supervised learning as a general approach to learning and provides the necessary background for
Graph-Based Learning, with an emphasis on the label propagation algorithm and its characteristics
concerning HLT applicability. Chapter 3 discusses in detail the problem of graph construction.
Chapter 4 discusses applications of graph-based learning to structuredlearning. Chapter 5 discusses
scalability issues in graph-based learning, and Chapter 6 concludes by assessing the intended impact
of the proposed research.

Summary of Contributions We provide in Chapter 2 an alternative proof of convergence for iter-
ative label propagation. Compared to the original proof by Zhu [238], our proof rigorously uses only
the minimal requirements for convergence, while remaining simple and terse. Chapter 3 proposes a
data-driven approach to graph construction. That approach uses asupervised classifier that provides
features for the graph-based learner. We illustrate data-driven graph construction with experiments
on lexicon learning and word sense disambiguation. On the latter task we obtainsignificantly better
results than the comparable state of the art (the former experiment has no baseline). In Chapter 4
we propose a framework for applying graph-based learning to structured inputs and outputs, in a
formalization that is applicable to a large variety of tasks. We then instantiate thatframework for
machine translation and apply it to a real-world translation task, improving on a state-of-the art
baseline. Finally, we introduce several contributions in Chapter 5 dedicated to scalability:

• an in-place label propagation algorithm that is always faster than the original iterative algo-
rithm (experimentally converges in roughly one third of the number of steps);

• a multicore label propagation algorithm that uses parallel processing andbenign data races to
distribute work on label propagation;

• a graph reduction algorithm that reduces the size of the graph by orders of magnitude without
affecting the result of label propagation (we use label propagation as proposed by Zhu [238]
throughout this dissertation);

• experiments with a real-world speech corpus that yield accuracy significantly better than state-
of-the art results on the Vocal Joystick speech corpus, while also beingscalable by using
kd-trees for fast nearest neighbors computation; and

• an algorithm called DYNTRIE that optimizes string kernel computations over a set of strings,
which experimentally is three times faster than existing approaches.

Two appendices mention theoretical results that we believe are interesting and potentially useful,
but that we have not used in our experiments. One appendix introduces two upper bounds for the
number of steps to convergence of the label propagation algorithm, and theother defines an alternate
algorithm that converges in fewer steps than the version we use, at the cost of requiring a more
expensive matrix squaring operation.
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Chapter 2

BACKGROUND

This chapter introduces the reader to the fundamentals of semi-supervisedlearning, in partic-
ular graph-based learning and label propagation, with a focus on HumanLanguage Technology
applicability.

2.1 Notational Aid

For convenience in understanding the equations presented in this work, Table 2.1 defines the most
important notations used throughout. By necessity some of the terms have notbeen defined at this
point yet, so the reader may want to skip this section for the moment and returnto it whenever the
definition of a symbol is unclear from context.

Table 2.1: Main notations used throughout this document.

Notation Description

a, b, c Real numbers or sequences
a, b, c Row vectors (e.g., feature vectors)
A, B Matrices or sets
[a, b) etc. Classic interval notation, “(“ and “)” for open, “[“ and “]” for closed
R+ The interval[0,∞)
R
∗

R \ {0} (alsoR
∗
+ is (0,∞) andN

∗ is N \ {0})
{e1, . . . , en} Finite set
〈〈e1, . . . , en〉〉 Finite ordered set a.k.a. row vector (unlike in a set, the order does matter

and equal elements may occur multiple times)
a[i] Theith component of vectora (notation chosen to avoid confusion withai,

theith vector in an ordered set〈〈a1, . . . ,an〉〉 )
BA For setsA andB, BA is the set of functions defined onA with values inB:

BA , {f | f : A→ B}
An The set of row vectors of lengthn ∈ N

∗ with elements inA (A stands in
for any set, e.g.[0, 1]n is the set of row vectors of lengthn with elements
in [0, 1])

Am×n The set ofm× n matrices with elements inA
1n The identity matrix of sizen × n (n may be missing if clear from the

context)
cm×n A matrix of sizem× n with all elements equal toc

(continued)
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Table 2.1(continued)

Notation Description

δn(b) The Kronecker vector of lengthn ∈ N
∗ with 1 in positionb ∈ {1, . . . , n}

and 0 everywhere else:〈〈
b−1

︷ ︸︸ ︷

0, 0, . . . , 0, 1,

n−b
︷ ︸︸ ︷

0, 0, . . . , 0 〉〉
log x Logarithm in base 2
lnx Natural-base logarithm
ℓ ∈ N

∗ Label count (number of distinct labels in an unstructured classification
problem)

t ∈ N Number of labeled (training) data samples
u ∈ N Number of unlabeled data samples
X = 〈〈x1, . . . , xn〉〉 Train and test features
X The (possibly infinite) set to which train and test features belong in a learn-

ing problem
Y = 〈〈y1, . . . , yt〉〉 The training labels
Y The set that labels belong to (for unstructured labelsY = {1, . . . , ℓ}, for

structured labelsY is an elaborate, potentially infinite set that depends on
the problem)

card(X) The number of elements in discrete setX (for infinite sets,card(X) =∞)

W ∈ R
(t+u)×(t+u)
+ Symmetric matrix holding pairwise similarities between samples, with la-

beled samples coming in the top-left corner
P ∈ [0, 1](t+u)×(t+u) Matrix holding row-normalizedpairwise similarities between samples, in

the same order asW
PUL ∈ [0, 1]u×t Bottom-left sub-matrix ofP holding unlabeled-labeled similarities
PUU ∈ [0, 1]u×u Bottom-right sub-matrix ofP holding unlabeled-unlabeled similarities
f ∈ R

(t+u)×ℓ Matrix holding the (temporary) solution in a label propagation iteration
fL ∈ R

t×ℓ The topt lines off
fU ∈ R

u×ℓ The bottomu lines off
γ ∈ R

∗
+ Lower bound for convergence speed in iterative label propagation

τ ∈ R
∗
+ Tolerance for fixed point convergence

← Mutation, e.g.f← Pf replacesf with Pf (only valid in algorithms)
, Introduction of notation, e.g.‖a‖ ,

√

d(a, 0)
[[a]] The indicator function: 1 if Boolean predicatea is true, 0 otherwise−→
f (A) GivenA ∈ K

a andf : K→ K
′,
−→
f (A) creates a vectorA′ ∈ K

′a contain-
ing the element-wise application off to A

The expressionp log p occurs frequently in this text withp ≥ 0 (usuallyp is a probability). Although
the functionp log p is undefined forp = 0, we define by convention0 log 0 = 0. This is a continuous
extension justified by the fact thatlim

pց0
p log p = 0.
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2.2 Semi-Supervised Learning

Machine learning techniques for supervised classification use labeled data to train models that learn
an input-output mapping function. A supervised model takes as its training input a sample collection
represented by feature vectorsX = 〈〈x1, . . . , xt〉〉 , wherexi are vectors belonging to a feature
spaceX . Also, in a typical unstructured classification task, discrete labels are available for these
samples:Y = 〈〈y1, . . . , yt〉〉 with yi ∈ {1, . . . , ℓ} ∀i ∈ {1, . . . , t}. The goal of the training stage
is to obtain a system that provides a good approximation of the probabilityp(y|x). When presented
with previously-unseen (test) samples inX , the system is able to attribute estimated labels to them.
The commonly-made enabling assumption is that both train and test samples belongto the same
distribution—i.e., they are assumed to be independently and identically distributed.

One problem is that sometimes—and frequently in Human Language Technology (HLT)
applications—obtaining labeled data is a slow, expensive, and error-prone process that requires ex-
pert human annotators to tag data manually. In contrast, unlabeled data (such as raw text, speech, or
images) is often abundant and easily obtainable. The need is therefore to approximatep(y|x) from
only few labeled samples and many unlabeled samples. Semi-supervised learning (SSL) is designed
to exploit such situations by systematically using a small amount of labeled data in conjunction with
a relatively large amount of unlabeled data in the learning process.

The typical SSL model takes as input a sample set represented by featuresX = 〈〈x1, . . . , xt+u〉〉 ,
where xi are again vectors inX . Discrete labels are available for the firstt samples: Y =
〈〈y1, . . . , yt〉〉 with yi ∈ {1, . . . , ℓ} ∀i ∈ {1, . . . , t}. The goal is to obtain a classifier that minimizes
classification errors on the test set. Depending on subsequent use, twokinds of SSL classifiers can
be distinguished:

• transductive:the test data is〈〈xt+1, . . . , xt+u〉〉 ;

• inductive: the test data consists of samples〈〈xt+u+1, . . . , xt+u+m〉〉 ∈ Xm, unseen during
training, to which the original unlabeled set〈〈xt+1, . . . , xt+u〉〉 may or may not be added.

Distinguishing between SSL and transduction can be subtle, partly becausethe literature tends
to use slightly different definitions for each. A simple definition proposed byZhu [239] is: SSL is
transductive if the resulting model is defined only onX; in contrast, if the model is defined onX
(i.e., it can predict a label for any point in the feature space), then SSL istransductive. For example,
although transductive support vector machines (TSVMs) [111] assumea transductive setup, they
define a model that, in spite of its name, supports inductive inputs naturally. Onthe other hand,
traditional graph-based approaches [27, 234] are unable to handle unseen inputs, although recent
work has extended graph-based frameworks to handle unseen inputs without modifying the model
and in a computationally-efficient manner [64]. In short, in transductive learning all test data is
available at the beginning of the training process, whereas in inductive learning the training proceeds
without some of the test data (or even without any test data at all, in which case the semi-supervised
effect is forgone and the process degenerates to simple supervised learning).

Like any machine learning technique, SSL builds on certain assumptions about the nature of the
function to learn. All machine learning methods rely on some notion of continuity or smoothness
of the function mapping inputs (features) to outputs (labels): ifx andx′ are similar, then the la-
belsy andy′ are likely to be similar (equal in the case of discrete labels). Semi-supervisedlearning
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methods actively exploit unlabeled data in enforcing that assumption. Use ofunlabeled samples can
only help ifp(x) can be related top(y|x), and to do that additional density assumptions are needed.
Commonly-used assumptions used by SSL algorithms are [42, Ch. 1]:

• The cluster assumption:Data points in the same cluster have the same label. A converse
formulation is that the decision boundary should span low-density spaces and avoid high-
density spaces. Adding more unlabeled data helps defining clusters and identifying high-
density and low-density regions.

• The manifold assumption:The high-dimensional samples lie on a low-dimensional manifold.
This can be seen as a particular case of the cluster assumption. Adding unlabeled samples
helps approximating the structure of the manifold and computing accurate geodesic distances.

If semi-supervised assumptions are not met, it is possible that unlabeled dataactually harms the
learning process [58, 56, 57]. As a simple example of unmet assumptions, consider two clusters
in X belonging to distinct classes (i.e., bearing distinct labels). Some samples in each cluster are
labeled, and many are not. If the clusters do not overlap significantly, the decision boundary goes
through a low-density region. But as the clusters get closer to each other, the data density in the
overlapping region grows and at a point will even surpass the maximum density of either or both
clusters. In that case, a density-informed semi-supervised learner may conclude that the clusters
belong to the same class. In such cases the class with a higher density of training samples “wins”
and in fact the use of unlabeled data only hurts because it propagates thewrong decision deeper into
the other cluster’s region.

2.3 Graph-Based SSL

Graph-based SSL algorithms have received increasing attention in the recent years [27, 214, 235,
236, 237, 232, 29, 239]. In graph-based SSL, data points are arranged in a weighted undirected
graph that reflects similarity among samples; the weight of an edge encodes the strength of the sim-
ilarity between that edge’s endpoints. Unweighted similarity graphs can be considered to have unit
weights for all edges. The graph is characterized by its symmetric weight matrix W ∈ R

(t+u)×(t+u)
+ ,

whose elementswij = wji are similarity measures between verticesi and j, and by the ordered
set 〈〈y1, . . . , yt〉〉 that defines labels for the firstt vertices. If no edge is linking nodesi andj,
thenwij , 0. Other than that, applications have considerable freedom in choosing the edge set and
thewij weights. For example, a simple approach to building a graph is to definewij = 1 if xi andxj

fall within each other’sk nearest-neighbors, and zero otherwise. Another commonly-used weight
matrix is defined by a Gaussian kernel of parameterized width:

wij = exp

[

−d(xi, xj)
2

α2

]

(2.1)

whered(xi, xj) is the (estimated) distance between feature vectorsxi andxj , andα is a hyperpa-
rameter to be chosen on a theoretical basis or optimized experimentally. Notice how similarity is
quickly decaying with distance, reflecting a dependence of graph-based SSL on accurate estimates
of high similarity, but not necessarily of low similarity. In practice, a host of distance measures
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have been used, based e.g. on cosine similarity, Euclidean distance, Jeffries-Matusita distance, or
Jensen-Shannon divergence. Often, applications use a blend of methods in definingW, for example
by layering ak nearest-neighbors or fixed-radius neighborhood on top of weights calculated by us-
ing Eq. 2.1. Choosing the appropriate similarity measure practically decides thegraph construction
and is the most important factor in successfully applying graph-based SSL.

Intuitively, in graph-based SSL, outputs can be computed by means of local graph neighborhood
membership, even though the similarity of many unlabeled samples with actual labeled samples can
be weak or even not defined. This is why graph-based semi-supervised learning often performs
better than nearest-neighbor approaches, although both make similar assumptions.

2.3.1 Graph-Based Learning Algorithms

Blum and Chawla [27] formulated binary classification on a similarity graph as amincut problem,
i.e. finding the smallest total weight of edges that, when removed, cut the flowbetween the binary-
labeled samples, modeled as sources and sinks. The nodes then are classified depending on whether
they are on the source or sink side of the partitioned graph. The main problem with this approach
is that it gives discrete results (does not provide a confidence of the labeling), which makes the
method unsuitable for function regression. In follow-up work, Blum et al.[29] obtain confidence
information in a manner reminiscent of the Monte Carlo method by performing multiplemincut
calculations, each preceded by adding random noise to edge weights. Averaging over many mincuts
lends confidence information to the classification.

Szummer and Jaakkola [214] proposed a random walk on a similarity graph.Their random
walk has a maximum length that ensures termination, albeit not necessarily at aglobal optimum.
Zhou et al. [232] described the label spreading algorithm, which is similar to label propagation but
includes a regularization term in the cost function, thus yielding a smoother output. Belkin et al. fo-
cused on the regularization aspect and derived bounds on the generalization error [12], and also
developed theoretical underpinnings for handling out-of-sample labels [13]. Agarwal [3] proposed
an algorithmic framework for hierarchical ranking on graph data by meansof regularization using a
modified cost function. Zhu et al. defined SSL using Gaussian fields and harmonic functions [237]
and defined the label propagation algorithm [234], proving that it always converges to a global op-
timum. Our research builds on the label propagation algorithm, which we describe in detail below.

2.3.2 Label Propagation

Once theW matrix is constructed, the basic label propagation algorithm [234] also constructs the
matrixYL of sizet× ℓ, encoding the known labels as Kronecker vectors:

YL(row i) = δℓ(yi) (2.2)

whereδℓ(yk) is a Kronecker row vector of lengthℓ containing 1 in positionyk:

δℓ(yk) , 〈〈
k−1

︷ ︸︸ ︷

0, 0, . . . , 0, 1,

ℓ−k
︷ ︸︸ ︷

0, 0, . . . , 0 〉〉 (2.3)

Algorithm 1 defines iterative label propagation. The definition usually found in literature [238] does
not include the toleranceτ and only focuses on iteration to convergence without regard for speedof
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convergence. We introducedτ > 0 to ensure provable convergence in a finite number of steps, for
which we will compute a bound in Chapter 5. Also, our definition provides more detail for practical
implementations.

Algorithm 1 : Iterative Label Propagation

Input : LabelsY; similarity matrixW ∈ R
(t+u)×(t+u)
+ with wij = wji ≥ 0

∀i, j ∈ {1, . . . , t + u}; toleranceτ > 0.
Output : Matrix fU ∈ [0, 1]u×ℓ containing unnormalized probability distributions over labels.
wii ← 0 ∀ i ∈ {1, . . . , t + u};1

pij ←
wij

t+u∑

k=1

wik

∀ i, j ∈ {1, . . . , t + u};

2

(YL)row i ← δℓ(yi) ∀ i ∈ {1, . . . , t};3

f′U ← 0u×ℓ;4

repeat5

fL ← YL;6

fU ← f′U;7

f′ ← Pf;8

until
t+u∑

i=t+1

ℓ∑

j=1

∣
∣fij − f′ij

∣
∣ < τ ;

9

Step 1 eliminates self-similaritieswii, which are usually large relative to other similarities. This
eliminates self-edges in the corresponding graph. The step is not required, but self-edges only delay
convergence and may reduce numeric precision by forcing all other similarities to be small numbers
after normalization.

After the algorithm terminates, thef matrix contains the solution in rowst + 1 to t + u in the
form of unnormalized label probability distributions; most applications need hard labels, obtain-
able by:

ŷi = arg max
j∈{1,...,ℓ}

fij ∀i ∈ {t + 1, . . . , t + u} (2.4)

Zhu has shown [238] that the iteration converges. We provide the proofbelow for reference. Let us
first splitP into four sub-matrices:

P =

[
PLL PLU

PUL PUU

]

(2.5)

With these notations, the following theorem applies.

Theorem 2.3.1(Zhu 2003 [237]). If
u∑

j=1

(PUU)ij ≤ γ < 1 ∀i ∈ {1, . . . , u}, then Algorithm 1

terminates regardless of the initial value off′U chosen in step 4.
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Proof. The algorithm’s core iteration becomes:

fU ← f′U (2.6)

f′U ← PUUfU + PULYL (2.7)

which is repeated untilfU is equal element for element withf′U, within accumulated toleranceτ .
Unrolling the iteration yields

f
stept
U = Pt

UUf
step0
U +

(
t∑

i=1

Pi−1
UU

)

PULYL (2.8)

We multiply both sides of the equation by1− PUU to the left, obtaining:

(1− PUU)f
stept
U = (1− PUU)P

t
UUf

step0
U + (1− PUU)

(
t∑

i=1

Pi
UU

)

PULYL (2.9)

= (1− PUU)P
t
UUf

step0
U + (1− Pt+1

UU )PULYL (2.10)

We need to show thatPt
UU converges whent → ∞. In fact it does converge to the null matrix. We

will show by induction that
u∑

j=1

(Pt
UU)ij ≤ γt ∀t ∈ N

∗. The base step fort = 1 is directly provided

by the hypothesis. For the inductive step, we write an element ofPt
UU as follows:

u∑

j=1

(Pt
UU)ij =

u∑

j=1

u∑

k=1

(
Pt−1
UU

)

ik
(PUU)kj (2.11)

=

u∑

k=1




(
Pt−1
UU

)

ik

u∑

j=1

(PUU)kj



 (2.12)

≤ γ
u∑

k=1

(
Pt−1
UU

)

ik
(2.13)

≤ γt (2.14)

The row-wise sums of elements inPUU converge to zero, and since all elements are positive, they all
converge to zero. This nullifies the term involvingfstep0

U and makes1− Pt+1
UU converge to1.

Solving Eq. 2.10 forfU yields:

fU = (1− PUU)
−1PULYL (2.15)

which has a unique solution if1−PUU is invertible, i.e., if all of graph’s connected components have
at least one labeled point in them. Notice that Theorem 2.3.1 imposes a stronger restriction, namely
thateveryunlabeled node in the graph is connected to at least one labeled node. Thetheorem below
lifts that restriction and clarifies that the non-singularity requirement alone guarantees convergence
of the iterative solution.
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Theorem 2.3.2. If 1 − PUU is non-singular, then Algorithm 1 terminates regardless of the initial
value off′U chosen in step 4.

Proof. We first prove that each element ofPt
UU decreases monotonically:

(Pt+1
UU )ij =

u∑

k=1

(PUU)ik(P
t
UU)kj (2.16)

≤
u∑

k=1

(PUU)ik(P
t−1
UU )kj (2.17)

= (Pt
UU)ij (2.18)

For the inequality we used(PUU)kj ≤ 1 and the fact that the exponential function is decreasing
for bases smaller than or equal to 1. Since they are all positive, they all converge by the monotone
convergence theorem [11], so there exists a matrixP∞UU , lim

t→∞
Pt
UU. Then

P∞UU = PUUP
∞
UU (2.19)

P∞UU − PUUP
∞
UU = 0 (2.20)

(1− PUU)P
∞
UU = 0 (2.21)

By the hypothesis1 − PUU is invertible, so we can multiply Eq. 2.21 to the left by(1− PUU)
−1

obtainingP∞UU = 0.

This theorem is related to perennial work on irreducible diagonal dominantmatrices [208, 90,
216], and can in fact be interpreted as a converse of the Lévy-Desplanques theorem [90]. That
theorem states that an irreducibly diagonally dominant matrix is nonsingular. Theorem 2.3.2 proves
that a weakly diagonally dominant matrix (in this case1 − PUU) with rows normalized to sum to 1,
which is also invertible, is irreducibly diagonally dominant.

The hypothesis of Theorem 2.3.2 relaxes the restrictions imposed by the hypothesis of Theo-
rem 2.3.1. Connectivity to at least one labeled node is not needed anymore; the requirement is
that1 − PUU is invertible, which translates to a graph in which each connected componenthas at
least one labeled node in it. This result is intuitively justified and also known from the methods
of relaxations [68]. The class of partially-labeled graphs for whichlim

t→∞
Pt
UU = 0 is larger than the

class of graphs with non-singular1 − PUU, but only the latter is of interest to us. Graphs including
disconnected unlabeled components are not “grounded” and may receive any constant label across
each such component because absence of labeled nodes brings no information to those components.

2.3.3 Illustration

Figure 2.1 shows a graph before and after the label propagation process. All edges have unit weight.
Initially, there are two “+” labeled nodes and two “-” labeled nodes. To show information on con-
fidence, we use nuance-coding as well. The label propagation algorithmpushes the labels into the
test nodes, the result being a blend of “+” and “-” for each node.

Note that the graph as drawn is planar but actually could reside (as a slightly curved or “crum-
pled” manifold) in a high-dimensional space. Graph-based algorithms can detect and exploit the
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lower-dimensional mesh defined by the graph. That is why defining a gooddistance measure
is important—good edges reveal that data lies on a low-dimensional manifold (inthis case two-
dimensional) that in turn is situated in a high-dimensional feature space.

The shades of grey filling the nodes in the bottom graph in Fig. 2.1 are accurate proportional
mixes of black and white computed from a real label propagation on the graph. Even after account-
ing for possible aberrations in the rendering process, it can be easily seen how test nodes closer to
the white train nodes receive lighter shades than those closer to the black train nodes.

+ ? ?

? − ?

? + ? −

? ? ?

+

−

+ −

Figure 2.1: A graph for a binary classification problem before and afterlabel propagation. The labels
are encoded as white (+) and black (−), and all edges have unit weight. The process assigns labels to
unlabeled nodes depending on their connections with neighboring nodes—shades of grey represent
different probabilities for the label assignment. By virtue of the global connectivity properties,
unlabeled nodes receive labels even when they are not directly connected to any labeled nodes.

Applications on real data lead of course to much larger graphs lying in higher-dimensional
spaces. Fundamentally the desired effect in applying graph-based learning is the same: starting
from points in a high-dimensional space, create a mesh defining a lower-dimensional manifold and
operate on it instead of the original space.

2.3.4 Cost Function for Label Propagation

Convergence is interesting only if the convergence point has desirable properties, such as optimizing
a goal useful in a learning process. The fixed point of the label propagation satisfiesf = Pf, with
values off restricted to existing labels for all labeled data. For a given unlabeled pointk in the
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graph and a labelc, we have

fic =
t+u∑

j=1

pijfjc =

t+u∑

j=1

wijfjc

t+u∑

j=1

wij

(2.22)

So along each columnc, the value off at each point is the weighted average of its values at neigh-
boring nodes, with the restriction that values offic at all labeled points is 1 if pointi bears labelc,
and 0 if pointi bears a different label. Functions satisfying Eq. 2.22 are calledharmonic func-
tions, and label propagation is in fact an application of the method of relaxations used to compute
harmonic functions [68], with two notable differences: (a) label propagation uses matrix algebra
to update function values at all points in the graph in one macro step; and (b)label propagation
updates simultaneously function values for allℓ labels, whereas traditionally the relaxation method
computes a uni-dimensional function (akin toℓ = 1). Harmonic functions occur naturally in many
physical and statistical phenomena (such as electric networks, thermal gradients, rigid solid physics,
and random walks) [68] and enjoy a number of interesting properties. One of particular interest is
smoothness. By Thomson’s principle [1, Ch. 10], the harmonic function obtained through label
propagation minimizes the following cost function:

S =
∑

i,j∈{1,...,t+u}
i>t ∨ j>t

k∈{1,...,ℓ}

wij (fik − fjk)
2 (2.23)

The conditioni > t∨ j > t is present to clarify that values infL are fixed and only values offU are
learned to minimize the cost function1 S. The cost measures the extent to which nearby nodes (as
defined byW) sport different values off; minimizingS favors globally-consistent values off such
that highly similar nodes are assigned highly similar values off. S is called smoothness (which is
a mild misnomer, sinceS increases with “jerkiness,” the opposite of smoothness).

If hard labels are needed, we must associate a labelyi ∈ {1, . . . , ℓ} with each unlabeled nodei.
The choice

ŷi = arg max
j∈{1,...,ℓ}

fij (2.24)

minimizes the discretized version of the smoothness function:

S ′ =
∑

i,j∈{1,...,t+u}
i>t∨ j>t

k∈{1,...,ℓ}

wij [[ŷjk 6= ŷik]] (2.25)

where[[a 6= b]] (defined in Table 2.1) is 1 ifa 6= b and 0 otherwise. Givenf, the labeling choice in
Eq. 2.24 minimizesS ′ because it zeroes the largest term in the partial sum (for nodei)

Si =
t+u∑

j=1

ℓ∑

k=1

wij (fik − fjk)
2 (2.26)

1In fact “cost functional” would be a more precise term because in this case the cost is parameterized by a function,
i.e.S(f). We use, however, an implicitly parameterized notation and the better-known phrase “cost function.”
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So a hard labeling obtained through label propagation finds a labeling that, to the extent possible
and within the constraints established by the already-labeled nodes, assigns identical labels to nodes
linked by high weights. This goal is consistent with the notion of similarity embodiedby W.

The fixed point of the label propagation algorithm has a number of equivalent interpretations
leading to various methods of computing the harmonic function. An intuitive interpretation is that
of a random walk. The random walk on the graph characterized byW andYL is defined as starting
with an unlabeled vertex, stopping as soon as a labeled vertex is reached,and making a step from
vertexi to vertexj with probability:

pij =
wij

∑

k wik
(2.27)

It has been shown [238] that upon convergence of the label propagation algorithm, the cellfij

contains (after normalization) the probability that a random walk starting in unlabeled nodei will
terminate in a node carrying labelj.

2.3.5 Previous HLT Applications

In HLT, Zhu applied label propagation successfully to a document classification task concerning
learning the Usenet newsgroup to which a specific document belongs [238]. Pang and Lee [179]
used min-cut to distinguish among objective and subjective documents. Zheng-Yu Niu et al. [78]
experimented with applying label propagation to word disambiguation, using twodifferent dis-
tance measures; they report significant improvements when replacing cosine distance with Jensen-
Shannon divergence. Goldberg and Zhu [93] apply label propagation to a sentiment categorization
task. Their graph construction includes connecting each unlabeled nodeto its k labeled neighbors
andk′ unlabeled neighbors. This allows control of the supervised vs. the unsupervised aspect of
learning (fork′ = 0, the algorithm becomes a supervisedk-nearest neighbors algorithm). Zhou
et al. [232] apply label spreading to the 20-newsgroups document classification task, with encour-
aging results.

2.3.6 Advantages and Disadvantages

When applicable, graph-based SSL has obvious advantages over traditional supervised approaches:
the distributionp(x) of unlabeled data provides valuable information for computing an accurate
estimate ofp(y|x), which translates into good predictions on the unlabeled data made with small
labeled sets, and potentially better predictions on the labeled data as well whenlabeled data is noisy.
Moreover, it turns out that many real-world situations fit the data profile required by SSL: a relatively
small amount of labeled data plus a large amount of unlabeled data.

An advantage shared by most graph-based SSL algorithms (except forthe simple mincut algo-
rithm [27]) is that they treat both label inputs and label outputs as real, continuous values. This is not
self-evident in all formulations of the algorithms. For example, the canonicaldescription of the la-
bel propagation algorithm uses discretization of training labels by representing labels as Kronecker
vectorsδℓ(yk), as shown in Eq. 2.3.

Also, output is often discretized too, by means ofarg max selection. A natural generalization is
to use soft labels on input (non-degenerated label probability distributions for the labeled samples)
and soft labels on output (skip thearg max step). In the case of modeling a continuous function, one
label suffices; the quadratic cost function (Eq. 2.23) ensures a good-quality regression—assuming
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the graph reflects similarity across samples accurately. Goldberg and Zhu [93] exploit this property
to learn a continuous ranking function starting from discrete values (discrete ratings of one to four
stars). They use one label with continuous values, initialized with natural numbers in{0, 1, 2, 3}
representing movie ratings. The label propagation algorithm regresses acontinuous function under-
lying the ratings, and the final step rounds the function to return results in thesame form as inputs.
Agarwal [3] describes a semi-supervised method to learn a hierarchicalranking function. Such
versatility of the learned function opens the door to new applications, such as n-best list rescoring
in NLP applications: after labeling with soft labels, test samples can be sortedin increasing order
of label value.

On the other hand, constructing the graph is an empirical process that reflects researcher’s un-
derstanding of the domain. Graph construction is highly sensitive to the choice of similarity mea-
sure and its parameterization (e.g.α in Eq. 2.1 and the maximum number of connected neighbors).
There is little theory helping the choice of a similarity measure, which suggests that for many fea-
ture spaces applications make suboptimal choices. Moreover, in HLT applications, many features
are discrete and heterogeneous (word, part-of-speech, root, stem,various counts, presence/absence
of a characteristic, etc.), and it is unclear how a smooth distance measure can be computed over
such feature sets.

Also, the issue of scalability in semi-supervised learning has so far received an ad-hoc treatment.
Graph construction prescribes one graph vertex for each sample, andsometimes the graph construc-
tion process creates even more vertices to model e.g. additional knowledgesources [93]. A usual
method for increasing scalability is to make the matrixW sparse by imposing ak nearest neighbors or
anǫ-radius neighborhood. However, there is little systematic study of similarity measures that are at
the same time scalable (such as slow-growing metrics [114]) and generally suitable for constructing
good similarity graphs. Moreover, even if the number of edges per vertexis artificially limited, the
sheer number of vertices could still be problematic for storing the graph in working memory.
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Chapter 3

GRAPH CONSTRUCTION

As mentioned in Chapter 2, constructing an accurate similarity graph is the most important step
in achieving good results with graph-based algorithms. Although many algorithms exploiting graph-
based structures exist, the issue of graph construction has remained an empirical and crafty process
that has forced each application to develop its own heuristic methods to overcome this difficult
step. The fidelity with which the graph reflects similarities among samples influences successful
application of graph-based methods much more than the particulars of the learning algorithm ap-
plied to the graph. This dependence on task-specific preprocessing discourages wide, generic use
of graph-based learning. In contrast, other machine learning methods—such as neural networks,
support vector machines, or Gaussian mixture models—are more amenable to direct usage with
lightly-preprocessed features using standard tools. A recent surveyon semi-supervised learning
literature [239, § 6.1] notes: “We believe it is more important to construct a good graph than to
choose among the methods. However graph construction [ . . . ] is not a well studied area.” Other
recent work [238, pp. 9] also mentions: “A good graph should reflectour prior knowledge about the
domain. At the present time, its design is more of an art than science.”

In this chapter we present novel approaches to graph construction, with a focus on choosing the
similarity measure and on reducing the time complexity of the construction step. Most importantly,
we propose a hybrid two-staged system using two distinct classifiers. Thefirst classifier is trained
to predict probability distributions over the label set{1, . . . , ℓ}, and the second (the graph-based
learner) uses the probability distributions as its input features. We explain how this setup leads to
good-quality graphs because it obviates many difficulties in choosing a similarity measure.

3.1 Similarity

The quality of a similarity graph is determined by the choice of similarity measure among samples.
A good similarity measure should obviously beindicative, meaning that two highly similar samples
are correspondingly likely to bear the same label. But a good similarity measureshould also be
smooth, i.e., similarity should vary smoothly, without discontinuities, from highly similar samples
to less similar samples; in other words, similarity should convey confidence information. This is
because the extent to which two samples are similar or dissimilar is very important inobtaining
a rich, expressive graph that allows labeling not only by means of directsimilarity, but also by
propagation into neighborhoods. A non-smooth similarity measure will create agraph in which
clusters have small volume and high density, whereas test points that are noisy, non-confident, or
slightly off the predicted distribution would be far away from any cluster andtherefore hard to
classify correctly.

Let us analyze qualitatively how smoothness affects graph quality, operating on an extreme
example. Consider working with a similarity measureσ01 that is discretized from an expert estimate
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as follows:

σ01(x, x
′) =

{

0 if expert predictŝy 6= ŷ′

1 if expert predictŝy = ŷ′
(3.1)

whereŷ, ŷ′ ∈ {1, . . . , ℓ} are discrete label predictions. Such a measure seems rather uninteresting
to use for learning. If it is sometimes unreliable then it conveys no information about the confi-
dence of the prediction; if it is of excellent quality then it obviates the learningprocess in the first
place. However, averaging similarities over a large number of edges endows the discrete similar-
ity with smoothness information at the cost of a denser graph—and consequently one that requires
more computation during label propagation. Given that each edge is less informative when using
a coarse smoothness, more data points and more edges are necessary for defining a good-quality
graph. So ultimately a non-smooth similarity measure is still workable if there is enough data to
bring smoothness information from the edge mesh. Fundamentally, more edgesof unit weight ap-
proximate fewer edges with real weight. In the interest of graph construction time, however, we
are interested in keeping the similarity graph sparse, which leads us to the conclusion that a smooth
similarity measure is needed for fast graph construction. We will define the needed smoothness
criterion for the similarity measure later in this chapter.

3.2 Distance vs. Similarity

Consider that a choice of features has been made and a similarity measure is tobe defined. For
certain feature sets, defining a similarity directly is a natural process with strong intuitive backing.
In fact feature sets amenable to intuitive similarity definitions are easy to find in HLT. Consider, for
example, using variable-length strings of tokens (such as, but not limited to,words, characters, or
syllables) directly as features. The feature space is therefore the Kleene closure [147]Σ∗ over some
alphabetΣ. Such features are not fixed-sized vectors and are best compared directly for similar-
ity through partial and approximate matching. The BLEU score [180] is a widely-used similarity
measure built around n-gram co-occurrence. Various string kernelsallowing for partial matches and
gaps have recently received increasing attention. Such kernels, again, compute a similarity measure
directly. Chapter 4 uses a string kernel on a Machine Translation experiment.

However, in many other cases, in HLT as in other domains, features are fixed-length vectors of
real numbers (e.g. MFCC1 vectors, frequency of occurrence, or even scores computed by a com-
plementary system) and/or categorical tags and Boolean values (e.g. wordin a vocabulary, part of
speech, capitalization information). In such cases it is often useful to reframe choosing asimilar-
ity measure into choosing adistancemeasure. This is because vector distances are better studied
and understood; vectorial feature spaces are most often characterized by distance measures, not
by similarity measures. Similarities are then obtained from distances through a Gaussian kernel.
Given a distanced : X × X → R+, a Gaussian kernel defines a family of similarity measuresσα as
follows [238]:

σα : X× X→ (0, 1] σα(xi, xj) = exp

[

−d(xi, xj)
2

α2

]

(3.2)

1MFCC stands for Mel Frequency Cepstral Coefficients, the dominant representation of speech data today.
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whereα is a bandwidth hyperparameter, usually optimized experimentally. (Some authors use2α2

instead ofα2, but that is just a convention meant to simplify certain equations.) For a givennodex,
the partial applicationσα(x, ·) defines a Gaussian radial basis function with origin inx. Although
there is no proof thatσα is the optimal way of converting a distance to a similarity measure, strong
empirical evidence shows it to be an appropriate choice. Shepard has argued [201] that similarity—
at least as defined by, and as applicable to, experimental cognitive science—has an inverse exponen-
tial relationship to distance, conjecture known as the Universal Law of Generalization. This law has
been confirmed in numerous cognitive experiments involving human and non-human subjects, such
as confusion between linguistic phonemes [162], sizes of circles [157],spectral hues as perceived by
people [75] and pigeons [98], and spatial generalization by bees [46]. In all cases experiments have
confirmed a dependency of perceived similarity to distance in the form of aninverse exponential.
Chater and Vit́anyi [43] further argued, with additional experimental evidence, that abetter defini-
tion of similarity makes it proportional to the inverse exponential of the squared distance, which
follows Eq. 3.2. They have argued that the same relation holds for non-Euclidean distances as well,
providing further empirical evidence for using the Gaussian kernel to convert distances to similari-
ties. (However, this does not imply that the Gaussian kernel is optimal for a graph-based algorithm,
which may act very different than the human perceptual system.)

The Gaussian kernel decreases monotonically with distance. The hyperparameterα controls the
bandwidth or resolution of the kernel by deciding how close two points haveto be in order to be
considered similar. Small values ofα make the kernel highly selective, at an extreme forcing most
test samples at uninformatively high distances from all other samples. Large values ofα engender
the opposite effect of “crowding” the space by making samples indistinguishably similar with one
another. Figure 3.1 illustrates theσα function for various values ofα.

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

d(x, x′)

σα(x, x′)

α = 0.5

α = 2

α = 5

Figure 3.1: The Gaussian kernel used for converting distances to similarities. The value of the
hyperparameterα controls the aperture of the similarity window.
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3.2.1 Distance Measures

Theσα function is used to initialize the adjacency matrix of the similarity graphW directly by as-
signingwij = σα(xi, xj). What is needed then is a distance measured that computes an estimated
distance between two samples, and an appropriate choice for hyperparameterα. The distance mea-
sure does not need to be a metric; positivity and symmetry are the onlyprima facierequirements.
Good accuracy for close-by samples is required for constructing a good graph, but not at far range
because similarity decays exponentially with distance. As mentioned in § 3.1, continuity of d is also
highly necessary for creating a good-quality graph.

In the absence of a principled method, generic distance measures for vectors are often used,
although it is understood they may not be optimal.

Minkowski Distance An obvious candidate is one of the Minkowski distance measures of orderp:

Lp(a,b) ,

(
F∑

i=1

∣
∣a[i] − b[i]

∣
∣p

)1/p

(3.3)

whereF is the dimensionality of feature vectors, anda[i] is theith slot of vectora. Minkowski dis-
tances include the well-known and often-used Manhattan distanceL1 and Euclidean distanceL2. A
fundamental problem with Minkowski distances in heterogeneous spacesis that the unit of measure
on each dimension influences the outcome, which makes it difficult to choose aproper unit for each
dimension. The quantities across dimensions may be largely different or noteven comparable be-
cause they have different types (e.g. a real-valued vs. a discrete variable, or a frequency value vs. an
amplitude value). The practical negative consequence is that in a heterogeneous space, one of the
dimensions might easily dominate all others and essentially decide single-handedly the magnitude
of the distance. Therefore, a per-dimension normalization becomes necessary:

Lp
α(a,b) =

(
F∑

i=1

αi

∣
∣a[i] − b[i]

∣
∣p

)1/p

(3.4)

Theαi coefficients are often chosen such that they ensure equal spread (e.g. standard deviation
or range) in each dimension. That choice, however, may still be suboptimalbecause some features
might be more indicative than others.

Cosine Distance A simple way to avoid relative magnitude issues is to use a distance define as
one minus cosine similarity, quantity often referred to as “cosine distance:”

d(a,b) = 1− a · b
‖a‖ · ‖b‖ = 1−

F∑

i=1

a[i]b[i]

√
√
√
√

F∑

i=1

a
2
[i]

F∑

i=1

b
2
[i]

(3.5)

Cosine distance depends only on the cosine of the angle between the two feature vectorsa
andb, quantity independent on the magnitude of the vectors. Ideally the distance would be equally
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sensitive in all directions. Therefore, cosine distance works best in feature spaces where features are
homogeneous and orthogonal [148]. For many feature sets these properties are not guaranteed, so
it is likely that cosine distance is suboptimal. Still, cosine distance is often the distance measure of
choice in the absence of a proper understanding of the feature space because it is computationally
inexpensive and performs well on many tasks.

3.3 Data-Driven Graph Construction

To construct a quality graph, an optimal distance measure should be used.The truth of the matter
is that in the intricate feature spaces met in HLT applications we do not generally have principled
criteria for choosing one particular distance measure (e.g. Minkowski orCosine distance), nor do
we have a formal means to preprocess features in ways that make them provably amenable to a
particular distance measure. Therefore, our decision is tolearna representation of the feature space
that makes it easy to define an optimal distance.

We propose an empirical data-driven technique for graph construction. This approach is central
to all of our applications of graph-based learning to HLT. The technique involves a two-pass system
employing two classifiers. First, a supervised classifier is trained on the labeled subset to transform
the initial feature space (consisting of e.g. lexical, contextual, or syntactic features) into a homoge-
neous and continuous representation in the form of soft label predictions. The soft label predictions
are (predicted) probability distributions over labels, that is, vectors of length ℓ containing positive
real numbers that sum to 1. Then, the soft label predictions are used asfeature vectorsby the graph-
based semi-supervised learner in conjunction with a similarity measure specialized for probability
distributions. In effect, a supervised predictor is employed as a feature transformation device by the
graph-based engine.

Figure 3.2 summarizes the structure of the two-pass classifying system.

xi ∈ X
First-Pass
Classifier

Graph-Based
Learner

〈〈y1, . . . , yℓ〉〉 i

ℓ∑

k=1

yki
= 1

Distance Function

〈〈z1, . . . , zC〉〉 i

ℓ∑

k=1

(zk)i = 1

Figure 3.2: Structure of a two-pass learning system. The first-pass classifier accepts original fea-
turesxi ∈ X and outputs probability distribution estimateszi over labels. The graph-based learner
uses these estimates as input features in conjunction with a distance function that is suitable for
probability distribution spaces.

Before explaining how this choice is useful, more detail on the setup is in order. The first-pass
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classifier learns a function

Z : X→ [0, 1]ℓ Z(x) = 〈〈z1, . . . , zℓ〉〉 (3.6)
ℓ∑

i=1

z[i] = 1 (3.7)

TheZ function is the usual classification function that the supervised classifier learns, such as
the softmax output of a neural network, the normalized output of a Gaussian mixture model, or the
outputs of a Support Vector Machine (SVM) fitted to a sigmoid function [182,145].

The representation obtained at the output of the first-pass classifier is then used as a basis for
measuring similarity among samples that determines the structure of the graph used for the second,
semi-supervised learning step. This approach bears commonalities and differences with previously-
proposed approaches as follows:

• Like cascading classifiers [5], the proposed data-driven learner uses two classifiers. The cas-
caded classifiers approach first uses a simple and comprehensive classifier. If that classifier
makes a low-confidence decision, the second classifier—specialized in handling exceptions
and possibly more computationally-intensive—is consulted. Unlike cascadingclassifiers, our
proposed learner uses the two classifiers inconjunction, not in disjunction. Our system runs
the second classifier using the first classifier’s outputs as input, and the classification deci-
sion is always taken at the output of the second classifier. Other differences include use of a
semi-supervised learner instead of two supervised learners.

• Similarly to principal component analysis (PCA) [202], the proposed approach transforms the
input feature into an intermediate format. Unlike PCA which is an unsupervisedmethod, the
proposed approach uses the labels to train the feature transformation engine in a supervised
manner.

• Several proposed approaches [67, 148, 207] learn a distance orsimilarity measure directly.
Our approach is different in that it learns a feature representation thatsimplifies the choice
of distance measure. The learner for the transformed features needs totrain on thet input
samples, whereas a supervised system that learns a distance measure must train on the con-

siderably more numerous
t(t− 1)

2
pairs of samples. (In particular cases computational cost

can be, however, reduced [148].)

The key advantage of using a first-pass classifier is that it moves the problem of defining a
distance measure from a heterogeneous space to a homogeneous spaceof probability distributions.
The next section is an overview of distance measures in that space.

3.4 Distance Measures for Probability Distributions

After the features have been transformed into probability distribution vectors, a variety of distance
functions that are more or less specialized can be applied. The Gaussian kernel in Eq. 3.2 is appli-
cable on top of any such distance.
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Below we discuss a few distance measures used for probability distributions, along with a few
properties of particular interest:

1. Non-negativity:d(a,b) ≥ 0 ∀a,b ∈ X

2. Indiscernibility is identity:d(a,b) = 0⇔ a = b ∀a,b ∈ X

3. Symmetry:d(a,b) = d(b,a) ∀a,b ∈ X

4. Triangle inequality:d(a,b) ≤ d(a, c) + d(c,b) ∀a,b, c ∈ X

Distance measures that satisfy all four properties are called metrics. As discussed, graph-based
learning only requires non-negativity and symmetry. However, there is anadditional motivation to
pursue distances that satisfy all metric properties. This is because may algorithms that approximate
the graph’s connectivity matrixWwith the nearest neighbors of each sample requires that the distance
measure is a metric. The first three properties are naturally fulfilled by most distance measures; it is
the triangle inequality that may not always be satisfied.

3.4.1 Cosine Distance

Cosine distance—which has already been mentioned above (Eq. 3.5)—should work properly on
probability distributions. Assuming the first-pass learner did learn a good discrimination function,
the outputs for different labelsy andy′ will be close to the Kronecker vectorsδℓ(y) andδℓ(y

′),
respectively. Such vectors are orthogonal and therefore are distanced at 1 (the maximum value of
cosine distance), whereas identical vectors are distanced at 0. It is worth noting that both cosine
distance and cosine similarity are sometimes confusingly referred to as “cosine metric” although
neither satisfies the triangle inequality. It is easy to prove that the cosine distance is the square of a
metric [129] and that one minus squared cosine similarity is also the square of adistance, proposed
under the suggestive name of “sine distance” [44].

3.4.2 Bhattacharyya Distance

The Bhattacharyya distance is defined as:

dBC(a,b) = − log
ℓ∑

i=1

√

a[i]b[i] (3.8)

The Bhattacharyya distance is positive and reaches zero only for identical distributions. The
quantity underlog is also called the Bhattacharyya coefficient:

BC(a,b) ,

ℓ∑

i=1

√

a[i]b[i] (3.9)

BC(a,b) can be zero, which makes the Bhattacharyya distance unbounded—it diverges to in-
finity whenever at least one of the distributions is zero in each component. Bounding is not required
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but is a very useful property of a distance measure, particularly for practical reasons (numeric sta-
bility). Bounding can be achieved by smoothing the two distributions prior to measuring distance,
for example by parameterized interpolation with the uniform distribution:

sα[i] = αa[i] + (1− α)
1

ℓ
(3.10)

The parameterα can be chosen on numeric grounds as:

α =
m

ℓ
(3.11)

wherem is the minimum admissible value ofBC(a,b). It is easy to show that for that value ofα
and form < 1, BC(z, z′) > m.

The Bhattacharyya distance is symmetric and reflexive but does not obeythe triangle inequality.
The Bhattacharyya coefficient also does not obey the triangle inequality,but

√

1−BC(a,b) does.
This fact motivates the Hellinger distance, which is discussed below.

3.4.3 The Hellinger Distance

The Hellinger distance [184], sometimes called the Jeffries-Matusita distance, is defined as:

dH(a,b) =

√
√
√
√1

2

ℓ∑

i=1

(
√

a[i] −
√

b[i]

)2
(3.12)

The Hellinger distance is positive and reaches zero only for equal distributions. Also, it is
bounded to a maximum value of 1. Note that authors may use other multiplication constants in

defining the Hellinger distance instead of
1

2
; we chose the constant that sets its range to[0, 1]. There

is an easily verifiable relationship between the Hellinger distance and the Bhattacharyya coefficient:

dH(a,b) =
√

1−BC(a,b) (3.13)

As mentioned above, the Hellinger distance satisfies the triangle inequality. It isalso reflexive
and symmetric, so it defines a metric over probability distributions.

3.4.4 Kullback-Leibler Divergence (and Symmetrized Variant)

The Kullback-Leibler divergence is specific to probability distributions. Inthe discrete case,
Kullback-Leibler divergence is defined as:

dKL(a,b) =
ℓ∑

i=1

a[i] log
a[i]

b[i]
(3.14)

In addition to being solidly motivated in information theory, the Kullback-Leibler divergence has
many desirable properties. By Gibbs’ inequality [108],dKL(a,b) ≥ 0, and equality is reached if
and only if the distribution are point-wise equal:dKL(a,b) ⇔ a = b. However, Kullback-Leibler
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divergence is not symmetric:dKL(a,b) 6= dKL(b,a) and therefore difficult to use as a distance
measure in graph-based learning.

Symmetry can be achieved in many ways, one of them being simply addingdKL(a,b) and
dKL(b,a) [167]:

dSKL(a,b) =
ℓ∑

i=1

(

a[i] log
a[i]

b[i]
+ b[i] log

b[i]

a[i]

)

(3.15)

=
ℓ∑

i=1

[
(
a[i] − b[i]

)
log

a[i]

b[i]

]

(3.16)

This is in fact how Kullback and Leibler originally defined the divergence.
Another issue with the Kullback-Leibler divergence is that it is not bounded—it diverges to in-

finity whenever one component inb distributions predicts near-zero probability and the correspond-
ing component ina does not. Also, there is an obvious requirement fordSKL to be well-defined
b[i] = 0 wherevera[i] = 0 (i.e., the distributions must beabsolutely continuouswith respect to each
other [133]). Similarly to Bhattacharyya distance, bounding can be obtained through smoothing by
e.g. interpolating both distributions with the uniform distribution. The interpolationfactorα (see
Eq. 3.10) can be chosen as:

α = 1− ℓe−M (3.17)

whereM is the maximum admissible value oflog
z[i]

z′[i]
.

A method that achieves symmetrizing and smoothing simultaneously is the Jensen-Shannon
divergence, discussed next.

3.4.5 Jensen-Shannon (Symmetrized Smoothed Kullback-Leibler) Divergence

The Jensen-Shannon divergence [163, 151], introduced independently by Rao [185] and Lin [146],
is defined as

dJS(a,b) =
dKL(a,m) + dKL(b,m)

2
(3.18)

wherem is the equal-weight interpolation ofa andb:

m[i] =
a[i] + b[i]

2
(3.19)

The Jensen-Shannon (J-S) divergence also has useful interpretations in information theory. It is
symmetric, bounded to[0, 1], and defined for any two distributions. Although the Jensen-Shannon
divergence is not a metric, it has been shown that is the square of a metric [77].

3.5 Joint Optimization of the First- and Second-Pass Classifiers

The combination of first-pass classifier and graph-based learner is at best globally optimized with
respect to the properties required of the graph. From the viewpoint of thegraph-based learner,
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a good feature space is filled with well-defined clusters that also have enough “fuzziness” at the
borders to provide adaptation to unseen data. It is worth noting that after the feature transformation
performed by the first-pass classifier, data does not reside on a manifoldanymore. This is because
the dimensionality of the transformed features is exactlyℓ, the same as the number of distinct labels.
This representation is often much more compact and almost always more homogeneous than the
original feature space.

3.5.1 Regularization of the First-Pass Classifier

Regularization of the first-pass classifier is essential in training a good combined system. This
is because often an un-regularized classifier will output very sharp, confident distributions. As
discussed in § 3.1, a discretized, discontinuous similarity measure (obtained by necessity from an
equally discretized distance measure) is detrimental to the graph-based learner. A space with few
and highly-concentrated clusters will not make it possible to predict good labels for data falling in
its large interstices. That is why the indecision of the first-pass classifier is important: The less
confident predictions establish fuzzy cluster borders and “fill” the feature space with informative
attractors.

Regularization [168] is a common class of techniques aimed at improving generalization of clas-
sifiers. Generally, regularization introduces a term in the learner’s objective function that penalizes
complex learners. The actual penalty depends on the learner—e.g. number of model parameters,
magnitude of parameters, or conditioning using priors.

In a lexicon learning application (§ 3.6) we useL2 regularization during training the first-pass
classifier, a neural network.

3.5.2 Adding and Mixing In Synthesized Data

An advantage conferred by operating in a transformed space is that datapoints can be easily synthe-
sized. For example, the Kronecker vectorδℓ(y) is the ideal, “golden” data point that predicts labely

with maximum confidence. In contrast, a uniform vector would be a point of high indecision. Fea-
tures can also be adjusted and combined: the normalized linear combination of feature vectors is
also a feature vector. Generating meaningful, highly indicative feature vectors is not possible for
many learning problems. Also, feature preprocessing is usually done in a problem-specific manner.

The output of the first-pass classifier can be manipulated for the purposeof e.g. adaptation or
smoothing. It is easy to place Kronecker vectors that act as attractors toward the hard labels. We
have implemented several such techniques in a word sense disambiguation application described
in § 3.7 and in an acoustic classification application described in § 3.8.

3.6 Application: Lexicon Learning

We applied the two-pass classifier described above to a part-of-speech(POS) lexicon acquisition
task, i.e. the labels to be predicted are the sets of POS tags associated with each word in a lexicon.
Note that this isnot a tagging task: we are not attempting to identify the correct POS of each word
in running text. Rather, for each word in the vocabulary, we attempt to inferthe set ofpossible
POS tags. Our choice of this task is motivated by the goal of applying this technique to lexicon
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acquisition for resource-poor languages: POS lexicons are one of themost basic language resources,
which enable subsequent training of taggers, chunkers, etc.

Due to homonymy and polysemy, the same written word often corresponds to several meanings,
and in particular—most importantly for this task—some of these meanings may map to different
parts of speech. Examples are readily available in all human languages; for example, in English,
the word “sport” may, depending on the context in which it’s used, mean severalverbssynonymous
with “to frolic,” “to trifle,” “to mutate,” or “to boast.” To these we add a fewnounsenses, such
as “athletic game,” and also anadjectivesense, as in “sport shoes.” Distinguishing exactly which
meaning was used in a particular context is a task called word sense disambiguation, which is the
subject of another experiment described later in this paper. For now, wewill set out to a somewhat
lesser goal, that of deducing the possible parts of speech of all words inthe lexicon of an initially
unknown language. This step, albeit small, is crucial in developing higher-level linguistic tools,
including word sense disambiguators themselves.

The setup for lexicon learning is as follows. We assume that a small set of words can be reliably
annotated by human annotators. From those labeled words, we infer POS-sets for the remaining
words by semi-supervised learning. For example, for the word “sport,”the correct outcome of a
POS learner would be:

sport: NOUN VERB ADJ

meaning that in English text, “sport” may be a noun, a verb, or an adjective.What is missing is as
important as what is present—there are no other possible parts of speechfor the word “sport.”

Rather than choosing a genuinely resource-poor language for this task, we use the English Wall
Street Journal (WSJ) corpus and artificially limit the size of the labeled set. This is because the WSJ
corpus is widely obtainable and allows easy replication of our experiments. The eventual applica-
tion would target a resource-poor language such as dialectal Arabic, inwhich case the labeled and
unlabeled data might follow less favorable distributions: In the case of a dialect, the labeled subset
would correspond to the standard language, and the unlabeled set wouldconsist of the dialect-
specific words.

We use sections 0–18 of the WSJ corpus. The number of unique words and thus the total number
of samples ist + u = 44 492. A given word may have between 1 and 4 POS tags, with an average
of 1.1 per word. The number of POS tags is 36, and we treat every POS combination as a unique
class, resulting inℓ = 158 distinct labels. In order to study the influence of the training set size on
the semi-supervised effect, we use three different randomly selected training sets of various sizes:
t = 5 000, t = 10 000, andt = 15 000 words, representing about 11%, 22%, and 34% of the entire
data set respectively; the rest of the data was used for testing. In order to avoid experimental bias,
we run all experiments on five different randomly chosen labeled subsetsand report averages and
standard deviations.

Due to the random sampling of the data it is possible that some labels never occur in the training
set or only occur once. We train our classifiers only on those labels that occur at least twice, which
results in 60–63 classes. Labels not present in the training set will therefore not be hypothesized and
are guaranteed to be errors. We delete samples with unknown labels from the unlabeled set since
their percentage is less than 0.5% on average. This decision is in keeping witha real-world scenario
in which human annotators label a training corpus because in that case the selected training corpus
would be representative of the language, not random.
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Table 3.1 shows the features used to represent words for the purposeof lexicon learning. The
categorical features are obtained by extracting the relevant words or word fragments from the train-
ing set, indexing them in a dictionary (one dictionary for each of featuresF1 throughF6) and then
using their index. A special symbol is allocated for an unseen dictionary entry. This case may be
encountered rather frequently, particularly for small training set sizes.We have also experimented
with shorter suffixes and also with prefixes but those features tended to degrade performance.

# Feature Type

F1 The three-letter suffix of the word Categorical
F2 The four-letter suffix of the word Categorical
F3..6 The 4 most frequent words that immediately precede the word in text Categorical× 4
F7 Word contains capital letters Boolean
F8 Word consists only of capital letters Boolean
F9 Word contains digits Boolean
F10 Word contains one or more hyphens Boolean
F11 Word contains other special characters (e.g. “&”) Boolean

Table 3.1: Features used for lexicon learning.

Qualitatively, the choice of featureF3..6 relies on the generally applicable supposition that a
given part of speech tends to occur within similar contexts. FeaturesF1 andF2 assume that words
of a given POS tend to have the same suffix—a more language-dependentsupposition. In any case,
although it is easy to justify the choice of all features, they are not orthogonal. For example, ifF5 is
true thenF4 is also true. Other features are also strongly correlated, for exampleF1 andF2.

3.6.1 The First-Pass Classifier

For the lexicon learning task, the first-pass classifier is a multi-layer perceptron (MLP) with the
topology shown in Fig. 3.3. We discuss the MLP topology below in flow order:the adaptation
layerA, the continuous mapping layerM , and then the layersi, h, ando.

3.6.1.1 The approximation layerA

As mentioned, at a minimum, we train the neural network with only 5000 labeled samples that
were selected at random from the corpus. This is a scarce scenario especially considering that some
features occur rather infrequently (for exampleF8 or F11 in table 3.1). Severe problems caused
by data scarcity arise when some of the input features of the unlabeled words haveneverbeen
seen in the training set. For such samples the neural network reads untrained, randomly-initialized2

weight values and consequently outputs arbitrary label predictions. It istechnically easy to eliminate

2Neural network initial weights are customarily initialized with small random values. A neural network trained with
discrete inputs may never update some weights if certain inputs are never seen.
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Figure 3.3: Architecture of first-pass supervised classifier (MLP) forlexicon acquisition.

randomness by overwriting untrained values to e.g. zero after training, but the fact remains that the
neural network makes a meaningless prediction.

The problem of unseen patterns is of course encountered in all neuralnetworks. What makes
this case different is the presence of categorical features. A neuralnetwork working with continuous
inputs can make a meaningful decision on an unseen pattern through the assumed continuity of the
classification function (similar inputs produce similar outputs). In the case of categorical features,
there is no continuity to be invoked, so an unseen categorical feature tapsinto an entirely untrained
portion of the neural network.

We address this problem by creating an approximation layerA. During training,A stores all seen
unique patterns in a hash table keyed by the concatenation of categorical inputs. During testing,A
loads its state and watches for never-seen features. Let us assume thatfeaturex[k] had never been
encountered during training. In that case,A finds the known input feature vectorx′ that is most sim-
ilar to x (by measuring the Hamming distance between the vectors). Thenx[k] is replaced withx′[k],
resulting in vector̂x = 〈〈x[1], . . . , x[k−1], x

′
[k], x[k+1], . . . , x[F ]〉〉 that has no unseen features and is

closest to the original vector.

3.6.1.2 The discrete-to-continuous mapperM

The input features are mapped to continuous values by a discrete-to-continuous mapping layerM .
This layer is equivalent to a vertical concatenation of classic neural network layers operating on so-
called one-hot inputs, in a setup customarily used for neural networks withcategorical inputs [15,
14], which we describe below.

One-hot encoding is a simple method of adapting categorical data for use asneural network
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inputs. If a categorical feature can takeN distinct values, presenting an integer in{1, . . . , N} in lieu
of a real number at the input of the MLP would be mistaken because it introduces artifact magnitude
and ordering among samples. For example, the neural network “thinks” that values1 andN are
much farther apart than valuesN − 1 andN and tries to learn a smooth classification function
under that assumption. However, categorical values should be equally distinct (apart) from one
another, and the learning process should be immune from the particular natural numbers assigned
to the input categories. Therefore, categorical inputs are commonly encoded through the following
mapping function:

H : {1, . . . , N} → {0, 1}N H(i) = δN (i) (3.20)

whereδN (i) is the Kronecker vector of lengthN with 1 in positioni and 0 elsewhere. The represen-
tation obtained this way is called the one-hot vector encoding of the categorical value. When using
one-hot encoding, the Hamming distance between any two distinct inputs is the same, and therefore
the result of the learning process does not depend on the particular mapping of categorical values to
numbers in{1, . . . , N}.

Let us analyze the transfer function for a neural network layer operating on a one-hot-encoded
input. The transfer function of a neural network layer can be generallyexpressed as:

f : R
N → R

N ′
f(H) =

−→
φ (Hω + B) (3.21)

whereN ′ is the number of outputs of the layer (fixed at system design time),H is the input (in
our case a one-hot vector),ω ∈ R

N×N ′
is the weights matrix,B ∈ R

N ′
is a bias vector (bothω

andB are learned model parameters),φ : R→ R is the activation function (chosen during design),
and
−→
φ (A) applies functionφ to each element of vectorA. It would appear that using one-hot

encoding is memory- and computationally-wasteful because it makes a single input occupy anN -
dimensional vector. For large values ofN , the multiplication would be computationally intensive
when implemented directly. However, we can use the information thatH is a one-hot vector in
rewriting the layer’s transfer function (after eliminating all zero terms) as follows:

f : {1, . . . , N} → R
N ′

f(i) =
−→
φ (ωrow i + B) (3.22)

So a simple method of obtaining the output of a one-hot vector coupled to a neural network layer
is to simply add theith row of matrixω to the biases vector and then applyφ to each element of the
result. There is no more intermediate one-hot vector to use and no more expensive matrix-vector
multiplication.

There are two further simplifications we make to the transfer function. Giventhat we already
have biases and a nonlinear activation function in the downstream hidden layer, in this layer we
chooseφ to be the identity function and we do not use a biases vector, so the transferfunction for
the continuous mapper simplifies down to:

f : {1, . . . , N} → R
N ′

f(i) = ωrow i (3.23)

This way the continuous mapping layer becomes computationally negligible both during use
and during training, as training only affects the responsible row and not the entire matrix. This last
property in fact may leave weights ofω entirely untrained for unseen categorical features. TheA
layer situated beforeM prevents that situation from occurring.
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3.6.1.3 The nonlinear hidden layer and the output layer

The continuous mapping layerM cascades into a classic neural network with input layeri, hidden
layer h, and output layero. To avoid potential confusion, we only count the number of hidden
layers. As such, the neural network in Figure 3.3 has a total of two hiddenlayers, one more than a
standard topology.

The activation function of the second hidden layer is based on the hyperbolic tangent func-
tion [134]:

φh(xi) = 1.7159 tanh

(
2

3
xi

)

(3.24)

Finally, the activation function of the last layer is the softmax function that is also nonlinear and
in addition ensures a normalized output:

φo(xi) =
ex(i)

ℓ∑

j=1

ex(j)

(3.25)

3.6.1.4 MLP training

The entire network, up to and including theM layer, is trained via backpropagation [190, Ch. 7].
The approximation layerA is not trained as its transfer function is predefined. The training criterion
minimizes the regularized mean squared error on the training data:

L =
1

n

n∑

t=1

(P (y|x, θ)− δℓ(y))2 + R(θ) (3.26)

whereθ stands in for all parameters of the neural network (the values of all weight matrices), andR
is a regularization term. We used anL2 regularizer [169] that penalizes large values of the weight
matrices. The regularizer is implemented by reducing each weight change bya factor proportional
to the magnitude of the weight itself.

3.6.2 Graph-Based Learner Setup

We use a dense graph approach in conjunction with the iterative approachto label propagation.
Convergence is stopped when the maximum relative difference between thevalues computed in two
consecutive steps is less than 1%.

For data size reasons, we apply label propagation in chunks. While the training set stays perma-
nently in memory, the test data is loaded in fixed-size chunks, labeled, and discarded. This approach
has yielded similar results for various chunk sizes, suggesting that chunking is a good approxima-
tion of whole-set label propagation. In fact, experiments have shown that performance tends to
degrade for larger chunk sizes, suggesting that whole-set LP might beaffected by “artifact” clusters
that are not related to the labels. LP in chunks is also amenable to parallelization: Our system labels
different chunks in parallel.
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We trained theα hyperparameter by three-fold cross-validation on the training data, usinga
geometric progression with limits0.1 and10 and ratio2. We set fixed upper limits of edges between
an unlabeled node and its labeled neighbors to15, and between an unlabeled node and its unlabeled
neighbors to5. The approach of setting different limits among different kinds of nodes isalso used
in related work [93].

For graph construction we tested: (a) the original discrete input representation with cosine dis-
tance; (b) the classifier output features (probability distributions) with the Jensen-Shannon distance.
These combinations were determined to be the best in several initial experiments.

3.6.3 Combination optimization

The static parameters of the MLP (learning rate, regularization rate, and number of hidden units)
were optimized for the LP step by 5-fold cross-validation on the training data.This process is
important because overspecialization is detrimental to the combined system: an overspecialized
first-pass classifier may output very confident but wrong predictions for unseen patterns, thus placing
such samples at large distances from all correctly labeled samples.

Regularization during backpropagation is crucial for achieving good smoothness of the com-
bined system. Trained without regularization, neural networks tend to produce low-entropy, highly
confident classifications. As discussed in § 3.1, such an output is detrimental for the label propaga-
tion stage. Therefore we use a strong regularization coefficient to curbthe tendency of the MLP to
issue low-entropy outputs. A strongly regularized neural network, by contrast, will output smoother
probability distributions for unseen patterns. Such outputs also result in a smoother graph, which in
turn helps the LP process. Thus, we found that a network with only 12 hidden units and relatively
high R(θ) in Eq. 3.26 (10% of the weight value) performed best in combination with LP (at an
insignificant cost in accuracy when used as an isolated classifier).

3.6.4 Results

Table 3.2 summarizes the experimental results obtained. We first conducted an experiment to mea-
sure the smoothness of the underlying graph,S(G), in the two LP experiments according to the
following formula:

S(G) =
∑

yi 6=yj ,(i>n∨j>n)

wij (3.27)

whereyi is the label of samplei. (Lower values are better as they reflect less affinity between nodes
of different labels.) The value ofS(G) was in all cases significantly better on graphs constructed
with our proposed technique than on graphs constructed in the standard way (see Table 3.2). The
same table also shows the performance comparison between LP over the discrete representation and
cosine distance (“LP”), the neural network itself (“NN”), and LP overthe continuous representa-
tion (“NN+LP”), on all different subsets and for different training sizes. For scarce labeled data
(5000 samples), the neural network—which uses a strictly supervised training procedure—is at a
clear disadvantage. However, for a larger training set the neural network is able to perform more
accurately than the LP learner that uses the discrete features directly. The third, combined technique
outperforms the first two significantly. Significance was tested using a difference of proportions
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significance test; the significance level is 0.01 or smaller in all cases. The differences are more
pronounced for smaller training set sizes. Interestingly, the LP is able to extract information from
largely erroneous (noisy) distributions learned by the neural network.

Initial labels Model S(G) avg. Accuracy (%)

Set 1 Set 2 Set 3 Set 4 Set 5 Average

5000 NN − 50.70 59.22 63.77 60.09 54.58 57.67± 4.55
LP 451.54 58.37 59.91 60.88 62.01 59.47 60.13± 1.24
NN+LP 409.79 58.03 63.91 66.62 65.93 57.7662.45± 3.83

10000 NN − 65.86 60.19 67.52 65.68 65.64 64.98± 2.49
LP 381.16 58.27 60.04 60.85 61.99 62.06 60.64± 1.40
NN+LP 315.53 69.36 64.73 69.50 70.26 67.7168.31± 1.97

15000 NN − 69.85 66.42 70.88 70.71 72.18 70.01± 1.94
LP 299.10 58.51 61.00 60.94 63.53 60.98 60.99± 1.59
NN+LP 235.83 70.59 69.45 69.99 71.20 73.4570.94± 1.39

Table 3.2: Accuracy results of neural classification (NN), LP with discrete features (LP), and com-
bined (NN+LP), over 5 random samplings of 5000, 10000, and 15000 labeled words in the WSJ
lexicon acquisition task.S(G) is the smoothness of the graph (smaller is better).

3.7 Application: Word Sense Disambiguation

The second task is word sense disambiguation using the SENSEVAL-3 corpus [161], which enables
a comparison of our method with previously published results. The goal is to disambiguate the
different senses of each of 57 words given the sentences within whichthey occur. There aret =
7860 samples for training andu = 3944 samples for testing.

In line with existing work [135, 78], we use the features described in Table3.3. However,
syntactic features, which have been used in some previous studies on this dataset [164], were not
included.

We used the MXPOST tagger [186] for POS annotation. The local collocations Ci,j are con-
catenated words from the context of the word to disambiguate. The limitsi andj are the boundaries
of the collocation window relative to the focal word (which is at index zero). The focal word itself is
eliminated. For example, for the sentence “Please check this out” and the focal word “check,” col-
locationC−1,2 is pleasethis out and collocationC−2,1 is ǫ pleasethis, whereǫ is a special symbol
standing in for the void context.

Related work on the same task [135] uses collocationsC−1,−1, C1,1, C−2,−2, C2,2, C−2,−1,
C−1,1, C1,2, C−3,−1, C−2,1, C−1,2, andC1,3 as features. In addition to those, we also usedC−3,1,
C−3,2, C−2,3, C−1,3, for a total of 15 distinct collocations. The extra features were selected sys-
tematically by applying a simple feature selection method: a featurex is selected if the conditional
entropyH(y|x) is above a fixed threshold (1 bit) in the training set, and ifx also occurs in the test
set (note that no label information from the test data is used for this purpose).
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# Feature Type

F1..3 POSs of the previous 3 words Categorical× 3
F4..6 POSs of the next 3 words Categorical× 3
F7 POS of the focal word itself Categorical
F8..22 Local collocationsC−1,−1, C1,1, C−2,−2, C2,2, C−2,−1, C−1,1,

C1,2, C−3,−1, C−2,1, C−1,2, C1,3, C−3,1, C−3,2, C−2,3, andC−1,3

(see text for details)

Categorical× 15

F8.. A bag of all words in the surrounding context Categorical× v

Table 3.3: Features used in the word sense disambiguation task.

We compare the performance of an SVM classifier, an LP learner using thesame input features
as the SVM, and an LP learner using the SVM outputs as input features. Toanalyze the influence of
training set size on accuracy, we randomly sample subsets of the training data (25%, 50%, and 75%)
and use the remaining training data plus the test data as unlabeled data, similarly tothe procedure
followed in related work [78]. The results are averaged over five different random samplings. The
samplings were chosen such that there was at least one sample for each label in the training set.
SENSEVAL-3 sports multi-labeled samples and samples with the “unknown” label. We eliminate
all samples labeled as unknown and retain only the first label for the multi-labeled instances.

3.7.1 SVM First-Pass Classifier Setup

The use of SVM vs. MLP in this case was justified by the very small training dataset. An MLP
has many parameters and needs a considerable amount of data for effective training, so for this task
with only on the order of102 training samples per classifier, initial testing deemed an SVM more
appropriate. We use the SVMlight package [112] to build a set of binary classifiers in a one-versus-all
formulation of the multi-class classification problem. The features input to eachSVM consist of the
discrete features described in Table 3.3 after feature selection.

We defined one SVM per target label and we trained it to discriminate that label against the
union of all others, setup that is commonly used and known as one-versus-all training [69]. We
evaluate the SVM approach against the test set by using the winner-takes-all strategy: the predicted
label corresponds to the SVM that outputs the largest value.

3.7.2 Label Propagation Setup

Again we set up two LP systems. One uses the original feature space (after feature selection, which
benefited all of the tested systems). The other uses the SVM outputs as its soleinput. Both use a
cosine distance measure. Note that this experiment is to some extent an exception from the others
in that it does not use probability distribution as its input. Instead, it simply usesthe uncalibrated
outputs of the SVM, which are theoretically unbounded and practically lie around the range[−1, 1].
For that reason, the distance measures discussed for probability distributions are not applicable, so
we applied cosine distance. A possible alternative is to fit the SVM outputs to a Gaussian and then
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normalize the results [182, 145]. We chose to use the SVM outputs directly in order to explore
applicability of LP on first-pass classifiers with non-probabilistic outputs.

Theα hyperparameter (Eq. 3.2) is optimized through 3-fold cross-validation on the training set.

3.7.3 Combination Optimization

Unlike MLPs, SVMs do not compute a smooth output distribution. Instead, theyare trained for
targets -1 for one label and 1 for the other label, and base the classification decision on the sign
of the output values. In order to smooth output values with a view towards graph construction we
applied the following techniques:

1. Combining SVM predictions and perfect feature vectors:After training, the SVM actually
outputs wrong label predictions for a small number (≈ 5%) of training samples. These outputs
could simply be replaced with the perfect SVM predictions (1 for the true class, -1 elsewhere)
since the labels are known. However, the second-pass learner might actually benefit from
the information contained in the mis-classifications. We therefore linearly combinethe SVM
predictions with the “perfect” feature vectorsv that contain 1 at the correct label position
and -1 elsewhere:

s′i = γsi + (1− γ)vi (3.28)

wheresi, s′i are theith input and output feature vectors andγ a parameter fixed at 0.5.

2. Biasing uninformative distributions:For some training samples, although the predicted class
label was correct, the outputs of the SVM were relatively close to one another, i.e. the decision
was borderline. We decided to bias these SVM outputs in the right direction byusing the same
formula as in Eq. 3.28.

3. Weighting by class priors:For each training sample, a corresponding sample with the perfect
output features was added, thus doubling the total number of labeled nodes in the graph. These
synthesized nodes are akin to “dongle” nodes as used by Zhu and Goldberg [238, 93]. The
role of the artificial nodes is to serve as authorities during the LP process and to emphasize
class priors.

3.7.4 Results

As before, we measured the smoothness of the graphs in the two label propagation setups and
found that in all cases the smoothness of the graph produced with our method was better when
compared to the graphs produced using the standard approach, as shown in Table 3.5, which also
shows accuracy results for the SVM (“SVM” label), LP over the standard graph (“LP”), and label
propagation over SVM outputs (“SVM+LP”). The latter system consistentlyperforms best in all
cases, although the most marked gains occur in the upper range of labeledsamples percentage. The
gain of the best data-driven LP over the knowledge-based LP is significant in the 100% and 75%
cases.
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# System Acc. (%)

1 htsa3 [96] 72.9
2 IRST-kernels [211] 72.6
3 nusels [136] 72.4
4 SENSEVAL-3 contest baseline 55.2

5 Niu et al. [78] LP/Jensen-Shannon 70.3
6 Niu et al. LP/cosine distance 68.4
7 Niu et al. SVM 69.7

Table 3.4: Accuracy results of other published systems on SENSEVAL-3.Systems 1, 2, and 3 use
syntactic features; 5, 6, and 7 are directly comparably to our system.

Initial labels Model S(G) avg. Accuracy (%)

Set 1 Set 2 Set 3 Set 4 Set 5 Average

25% SVM − 62.94 62.53 62.69 63.52 62.99 62.93± 0.34
LP 44.71 63.27 61.84 63.26 62.96 63.30 62.93± 0.56
SVM+LP 39.67 63.39 63.20 63.95 63.68 63.9163.63± 0.29

50% SVM − 67.90 66.75 67.57 67.44 66.79 67.29± 0.45
LP 33.17 67.84 66.57 67.35 66.52 66.35 66.93± 0.57
SVM+LP 24.19 67.95 67.54 67.93 68.21 68.1167.95± 0.23

75% SVM − 69.54 70.19 68.75 69.80 68.73 69.40± 0.58
LP 29.93 68.87 68.65 68.58 68.42 67.19 68.34± 0.59
SVM+LP 16.19 69.98 70.05 69.69 70.38 68.9469.81± 0.49

100% SVM − 70.74
LP 21.72 69.69
SVM+LP 13.17 71.72

Table 3.5: Accuracy results of support vector machine (SVM), label propagation over discrete fea-
tures (LP), and label propagation over SVM outputs (SVM+LP), for theword sense disambiguation
task. Each learner was trained with 25%, 50%, 75% (5 random samplings each), and 100% of the
training set. The improvements of SVM+LP are significant over LP in the 75% and 100% cases.
S(G) is the graph smoothness.

For comparison purposes, Table 3.4 shows results of other published systems against the
SENSEVAL-3 corpus. The “htsa3”, “IRST-kernels”, and “nusels”systems were the winners
of the SENSEVAL-3 contest and used extra input features (syntactic relations). The Niu
et al. work [78] is the most comparable to ours. We attribute the slightly higher performance of
our SVM due to our feature selection process. The LP/cosine system is a system similar to our LP
system using the discrete features, and the LP/Jensen-Shannon systemis also similar but uses a
distance measure derived from Jensen-Shannon divergence.
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3.8 Application: Acoustic Classification

Perhaps the most complex systems used in HLT today are dedicated to automatic speech processing.
Here we will focus on acoustic modeling, one relatively well-delimited and specialized aspect of
speech processing.

From a modeling standpoint, speech recognition can be described by the equation:

Ŵ = arg max
W

P (W |X) (3.29)

whereX = x1x2 . . . is the acoustic observation sequence, andŴ = w1w2 . . . is the corresponding
estimated word sequence. The large task of estimatingW from X can be simplified with the help of
phone recognition, where the sequence of wordsW is replaced with a sequence of phones out of a
possible phone vocabulary. The task could be simplified further by removing temporal information.
In that case, a sequence of phonetic observations predicts a single phone, task known asphone
classification. We will focus our next experiment on a phone classification task.

One important challenge for phone classification and speech recognition ingeneral is finding
a good representation of the speech signalX, specifically, extracting indicative features from the
audio signal.

Today, frequency domain representations are the dominant approach tofeature extraction for
speech. A widely used feature representation is known as the Mel-Frequency Cepstrum Coeffi-
cients (MFCC) [63]. Bogert et al. introduced the notion of cepstrum (ananagram of “spectrum”)
in 1963 [31]. The cepstrum of a signal is the Fourier transform of the power spectrum of the sig-
nal. The signal is applied the Fourier transform once, then the power is obtained by squaring the
transform, then the logarithm is applied to express power in decibels (dB), and finally the cepstrum
is obtained by applying the Fourier transform again to the power in dB. The double application of
the Fourier transform reflects the cepstrum’s ability to capture relatively slow variations in the fre-
quency spectrum of the input signal. The double transform can be analyzed like a regular signal, and
notions such as quefrency and liftering have been defined by furthering the anagram metaphor [113].
It has been shown experimentally [63] that such slow variations of the power spectrum are indicative
features of the speech signal.

The MFCC method is specialized for speech by being perceptually-motivated. The human ear
has a specific and nonlinear frequency response, and the humans’ excellent capability of understand-
ing speech motivates imitation of at least the early stages of the hearing system,which are easily
measured and relatively well understood. MFCC therefore approximatesthe human ear’s frequency
response by warping the power-frequency spectrum obtained after applying the Fourier transform
into a different spectrum by using an empirical function known as the Mel frequency. Furthermore,
the warped power spectrum is filtered through a series of band-pass filters, each having a triangular-
shaped response [105, Ch. 6]. The purpose of the filtering is to allow for down-sampling of the
signal without aberrations caused by . A notable difference from the classic cepstral transform is
that the second transform applied is Discrete Cosine instead of Fourier. It has been experimentally
showed that the Discrete Cosine instead of Fourier yields better speech features than the Fourier
transform [36]. The importance of the function parameters decreases with their order. Application
commonly use the first 13 coefficients (the continuous components at each quefrency), to which
three more coefficient sets may be added, each containing 13 coefficients: (a) the 1–2 Hz modula-
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tion energy; (b) the 3–15 Hz modulation energy; and (c) the 20-43 Hz modulation energy, for a total
of 52 possible coefficients. Our experiments use the first 26 coefficients.

Contemporary acoustic modeling approaches are typically using a tried-and-true technique: after
sound acquisition and extraction of MFCC features, a hidden Markov model (HMM) with Gaussian
mixture (GM) probabilistic models is being trained. Today’s state-of-the-artsystems further improve
accuracy and robustness by using discriminative training and adaptation totest data using techniques
such as MLLR [86] or MAP [89].

Several alternative or complementary approaches have been exploredin the past, including dif-
ferent ways of modeling output distributions, such as Support Vector Machines (SVMs) [87] and
neural networks [33], as well as novel training techniques, such as large-margin training [198].
However, adoption of new methods by the mainstream ASR community has been slow—with some
exceptions [233, 210]—mainly because the standard methodology is well-tested, efficient, and easy
to use, and also because new models or learning procedures often do not scale well to large datasets.
Exploration is difficult mainly because of the data sizes involved: training even a highly optimized
speech recognition system takes hours or days. On such large data sets, sophisticated machine learn-
ing methods are hardly applicable, even if they are theoretically superior and achieve good results
on artificial or small tasks. A field researcher or developer would be therefore inclined towards
spending time on incremental improvements on the existing techniques instead of trying radically
new approaches that are liable to have an extremely long experimental cycle. It could be argued that
due to sheer data size, the ASR community is forced to improve on relatively well-understood local
optima instead of exploring in search of qualitatively better approaches.

Continued progress in ASR, however, does require exploring novel approaches, including new
machine learning techniques, as well as adapting these to large data sets andthe computational
constraints that present-day ASR systems are subject to. In the following we investigate graph-
based learning as a way to improve over standard acoustic models.

Applying graph-based learning to speech is a potentially advantageous endeavor. As discussed,
graph-based classification enforces global consistency across training and test samples, so it is in-
herently adaptive. In contrast, related traditional systems (such as nearest-neighbor) only rely on
similarity between the test and training samples. Graph-based learning is typically used in a semi-
supervised, transductive setting where a relatively small amount of labeled data is used in conjunc-
tion with a large amount of unlabeled data. However, as we will show below, itcan also be used as a
post-processing step applied to a standard supervised classifier trainedon a large amount of labeled
data and tested on a small amount of unseen data, which is the typical scenario in speech processing.
In this case, graph-based learning provides a form of adaptation to the test data by constraining the
decisions made by the first-pass classifier to accommodate the underlying structure of the test data.

On the other hand, applying graph-based learning to acoustic classificationraises unique chal-
lenges:

• Similarity measure:As discussed in Chapter 2, choosing an appropriate similarity measure
is key to graph-based learning. It is unclear what similarity measure would be optimal in
acoustic feature spaces.

• Adaptation to Sample Size Discrepancy:Originally, graph-based learning was formulated for
semi-supervised scenarios, where a large amount of unlabeled but a small amount of labeled
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data are present. In many speech processing applications, we find the opposite situation. In
these cases, graph-based learning can still be of benefit due to the global consistency assump-
tion it enforces, thus effectively implementing adaptation in a different sense than commonly
used. However, this requires changes to the basic algorithm.

• Scalability:Acoustic data is typically available in large quantities. Constructing a full similar-
ity graph would be feasible only for very small speech corpora. We will discuss our approach
to scalability of phone classification in Chapter 5.

We describe in the following subsections how our system addresses thesechallenges. The
setup consists of the two-pass system described in § 3.3 in conjunction with Jensen-Shannon di-
vergence (§ 2.3) as a distance measure. Results on an 8-class vowel classifier are presented with the
goal of demonstrating the effect on speaker adaptation. Our approachimproves significantly over
state-of-the-art adaptation algorithms.

3.8.1 Adaptation to Sample Size Discrepancy

Adaptation is an important challenge in speaker-independent ASR systems.Label propagation is
inherently adaptive because it uses the self-similarity of the test data in addition to the similarity of
the test data with the training data. To properly exploit the adaptive nature oflabel propagation, we
operate a simple but essential change to the matrixW.

First, let us consider the situationt ≫ u. This is the case when a speech classification or
recognition system is trained against many hours of data and then presented a brief utterance, such
as a phrase or sentence. The samples of the test utterance will bear similarityedges with the training
samples and also similarity edges with other test samples. Given that there are much more many
labeled samples than unlabeled ones, and also that similarity is additive (per Theorem 5.4.2), it
follows that the accumulated similarity with labeled data will be much stronger than thesimilarity
with unlabeled data, even when similarity with each individual training sample is much smaller than
similarity with other test samples.

A graph-based learner in which the edge weights linking unlabeled to labeledsamples are much
stronger than edges linking unlabeled samples with one another will degenerate into an unsophisti-
cated nearest-neighbor classifier: random walks will be always or almost always absorbed directly
by labeled vertices, therefore test samples will be labeled in proportion to theaccumulated connec-
tion strength for each label.

If only the k nearest neighbors are used in building the graph, the effect is less pronounced but
still present. Due to the large quantity of training data, the likelihood of finding similar training
data is higher, so thek top slots may be saturated with similar entries, which lead to strong weights
after summation. In contrast, even though one or a few unlabeled neighbors may be very similar,
the dearth of unlabeled samples means that unlabeled-unlabeled connections are still at a large
disadvantage. Even a relatively low threshold such ask = 10 means a handicap of up to one order
of magnitude for the unlabeled-unlabeled connections.

To benefit of adaptation, we want to manipulate the density of the graph in the region of the test
utterance. We achieve this by adjustingwij linking unlabeled samples with one another by:

wij ←
t

u
wij ∀ i > t, j > t (3.30)
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This artificially simulates that there are as many test as train samples, greatly enhancing the adap-
tive properties of the algorithm. Although simple, this adjustment is extremely effective; without it,
the classification degenerates in nearest-neighbor (i.e., the label propagation algorithm converges in
exactly one step). We confirmed experimentally that the unadjusted graph never improves upon the
first-pass classifier.

3.8.2 Interpolation with Prior Distributions

For the training set we have access to the true labels and consequently to thesample prior probability
distributions:

P yi
p = 〈〈01, . . . , 0yi−1, 1yi

, 0yi+1, . . . , 0ℓ〉〉 = δt(yi) (3.31)

(δℓ(n) denotes a Kronecker vector of lengthℓ with 1 in thenth position and 0 elsewhere.) These
prior distributions represent the ground truth, so they are highly informative for classification. Using
them exclusively, however, would lose smoothness information, so they should best be used in
interpolation with the soft predictions resulting from the first-pass classifierrunning against its own

training data. We chose an equal-weight interpolation
P + Pp

2
throughout our experiments.

Interpolation with priors is interesting from two perspectives. First, interpolation achieves a
similar effect to Zhu’s dongle vertices [238, § 4.6]. Zhu suggested and successfully used additional
labeled vertices (that he called dongle vertices) that encode additional knowledge about data, such
as the predictions of an external classifier. For example, each unlabeledsample may be linked to
a dongle node that bears a label (soft or hard) as predicted for that sample by another classifier.
The strength of the connection is commensurate to the desired influence of that additional classifier
over the label propagation process. On the manifold approximated by the graph, the presence of
dongle vertices creates additional labeled “holes” that attract random walks originating in unlabeled
vertices and as such bias the labeling process. In effect, dongle vertices change labeled point density
on the manifold in the vicinity of unlabeled points. Interpolation achieves a similar effect by only
changing feature vectors and consequently connection weights, withoutadding any new vertices.
In fact, after graph reduction (§ 5.4) is taken into account, the manifold reveals itself as a space
with exactlyℓ labeled attractors, one for each label. Interpolation of weights with the Kronecker
vectors is equivalent to adding dongle vertices for the corresponding corners of the space that encode
maximally confident label decisions. This has the effect of compensating thesystematic errors and
the noise sensitivity of the first-pass classifier. An important aspect is thatinterpolation does not
impact graph size and scalability; in contrast, adding dongle vertices increase the number of vertices
and may increase the size of the associated matricesPUU and/orPUL.

The second interesting aspect of interpolation is that it directly uses thefeatures-labelsduality,
a property of the two-pass classifier. In the graph-based system, features and labels have the same
semantics, whereas in a traditional classifier, features and labels belong todistinct spaces. The
duality allows us to mix them by injecting the label-derived Kronecker vectors into the features of
the labeled samples by simply averaging the two.

3.8.3 Data

We performed experiments on an 8-vowel classification task collected for the Vocal Joystick (VJ)
project [118], whose goal is to develop voice-controlled assistive devices for individuals with motor
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impairments. In the typical setup, a VJ user can exercise analog, continuous control over mouse
cursor movements by using vowel quality, pitch, or loudness. One of the components of the VJ
system is a speaker-independent vowel classifier whose output is used to control, for example, the
direction in which a mouse cursor moves. In this and similar scenarios, phonetic classification that
is robust against speaker variation is of utmost importance in order to avoidrejection of the system
by the user due to inaccurate recognition of control commands.

For training this classifier, a corpus was collected consisting of 11 hours of recorded data of
which we selected a subset. The sizes of the train, development, and test data are shown in Table 3.6.

Set Speakers Samples Non-silent audio

Training 21 420· 103 1.16h
Development 4 200· 103 0.56h
Test 10 80· 103 0.22h

Table 3.6: Training, development, and testing data used in the Vocal Joystickexperiments.

This scenario is a good test bed for our proposed approach since an already tuned, high-
performing baseline system with standard adaptation methods exists for this data set. In addition, the
focus on phonetic classification allows us to focus on the acoustic models whileignoring e.g. lan-
guage model and search effects that would characterize large-vocabulary systems. At the same
time, this corpus is vastly more realistic than the toy tasks used in machine learning since it contains
hundreds of thousands of samples.

3.8.4 Experiments and Results

We tested our phone classification system by directly using the outputs of the best classifier on the VJ
corpus to date, created by Li [144]. Li’s classifier is a multi-layer perceptron (MLP) enhanced with
a regularized adaptation algorithm. The adaptation algorithm uses a regularizer that prevents the
regularized model diverging too much from the unadapted system, thus avoiding overtraining on
adaptation data. We used the same MLP (50 hidden units and a window size of 7 samples) and the
same adaptation algorithm as Li.

We apply our system to both the non-adapted MLP outputs and the adapted outputs. In each
case, a graph (of reduced size using the result of Proposition 1) was built for each test utterance,
after which iterative label propagation was applied to the graph. As an additional baseline we
use GMMs (a) without adaptation and (b) with MLLR adaptation. The adaptation experiments
used 5-fold cross-validation, each time using a held-out part of the test data for computing adaptation
parameters. The results are shown in Table 3.7. Boldface numbers are significantly better than the
comparable baselines.

The similarity of choice was Jensen-Shannon divergence; to confirm that it is a good-quality
distance, we compared it with development set performance for two commonly-used distance
measures: Cosine distance and Euclidean distance. They both engendered higher error rates
(22.62±11.23% for Cosine and 22.48±11.00% for Euclidean).
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Model Error Rate (%)

Dev Test

GMM, no adaptation n/a 39.62
MLP, no adaptation 24.81±10.69 31.91±9.39
MLP+GBL, no adaptation 21.91±10.52 28.75±12.31

GMM+adaptation n/a 20.05±3.76
MLP+adaptation n/a 12.18±3.51
MLP+adaptation+GBL n/a 8.32±3.21

Table 3.7: Error rates (means and standard deviations over all speakers) using a Gaussian Mixture
Model (GMM), multi-layer perceptron (MLP), and MLP followed by a graph-based learner (GBL),
with and without adaptation. The highlighted entries represent the best error rate by a significant
margin (p < 0.001).

3.9 Discussion of the Two-Pass Classifier Approach

In this chapter we investigated a two-step procedure for graph construction that uses a supervised
classifier in conjunction with a graph-based learner. The advantages ofthe two-pass classifier system
are:

• Uniform range and type of features: The output from a first-pass classifier can produce well-
defined features, in the form of posterior probability distributions. This eliminates the problem
of input features having different ranges and types (e.g. binary vs.multivalued, continuous
vs. categorical attributes) which are often used in combination.

• Feature postprocessing: The transformation of features into a different space also opens up
possibilities for postprocessing (e.g. probability distribution warping) depending on the re-
quirements of the second-pass learner. In addition, specialized distancemeasures defined on
probability spaces (§ 3.4) can be used, which avoids violating assumptions made by metrics
such as Euclidean and cosine distance.

• Optimizing class separation:The learned representation of labeled training samples might
reveal better clusters in the data than the original representation: a discriminatively-trained
first pass classifier will attempt to maximize the separation of samples belonging todifferent
classes. Moreover, the first-pass classifier may learn a feature transformation that suppresses
noise in the original input space.

Difficulties with the proposed approach might arise when the first-pass classifier yields confident
but wrong predictions, especially for outlier samples in the original space.For this reason, the first-
pass classifier and the graph-based learner should not simply be concatenated without modification,
but the first classifier should be optimized with respect to the requirements ofthe second.
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Experiments suggest that the resulting system combines the strengths of bothclassifiers. The
first-pass classifier offers the graph-based learner a uniform and low-dimensional feature set to work
with. That feature format is better suited for an optimally-functioning distancemeasure. Measure-
ments put the proposed two-pass approach to classification in contrast witha more traditional ap-
proach of using stock distance measures on top of the raw features. Results show that the approach
using the outputs of the first-pass classifier as features for the graph-based classifier is superior to
the conventional approach.

Next chapter will mark a departure from the experimental setup discussedabove. Instead of
using fixed-length real-valued vectors as features and discrete label values, we will focus on defining
a theoretical and practical framework for applying graph-based learning to structuredinputs and
outputs.
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Chapter 4

GRAPH-BASED LEARNING FOR STRUCTURED INPUTS AND OUTPUTS

The theoretical study and practical applications introduced in Chapter 3 used a Gaussian similar-
ity kernel to compute a similarity graph. The similarity kernel worked on top of a distance measure,
which in turn was defined over fixed-length vectors containing either problem-specific features or
probability distributions obtained from a first-pass classifier. The inputs to the overall learning
system were always unstructured—fixed-length feature vectors containing real numbers. Certain
features had Boolean or categorical values, in which case we took special measures to transform
them into real-numbered values, such as the one-hot approach (§ 3.6.1.2). The predicted labels were
categorical as well (e.g., POS tag or word sense).

It is worth noting that in the applications presented above, the components of the input vector
did sometimes exhibit interdependence, which confers structure to the feature spaceX . For exam-
ple, the lexicon learning experiment (§ 3.6) uses features (refer to Table3.3) that are obeying certain
constraints, the most obvious being that featureF8 (Boolean feature that is true if the word consists
only of capital letters) logically impliesF7 (Boolean feature that is true if the word contains capital
letters). There are, without a doubt, more subtle interdependencies and intrinsic structure in the
features in Table 3.3, for example there is a strong correlation betweenF2 andF1, the latter being
a suffix of the former. Part of the value of the two-pass classifier discussed was that it could learn a
similarity measure and ultimately a classification function without requiring heavy feature selection
or preprocessing. Ultimately, however, the learner wasunstructuredbecause it ignored structural in-
formation of the input or output space. Exploiting such information could be advantageous because
structural constraints reduce the size of the search space, allowing a faster and more focused learn-
ing. Also, many learning problems do not even fit the classic mold of finding a function that maps
real-valued vectors to categorical labels. The field of learning with structured inputs and outputs
has received increasing attention in recent years, and is the subject ofthis chapter within the context
of graph-based semi-supervised learning. Our contribution in this chapter is to extend graph-based
learning to learning tasks with structured inputs and outputs, and to apply the resulting theoretical
framework to a machine translation task.

4.1 Structured Inputs and Outputs

Traditionally, the input setX of a learning problem is modeled as a vector space of real-valued or
categorical features, and the output setY is modeled as a discrete, finite set of categorical labels.
However, in many problems either or both ofX andY may be structured spaces that may or may
not be finite. The structure could concern not onlyX andY, but also a relationship between them.
Examples include:

• Spatial structure:In many image processing applications—such as image segmentation—the
input is an entire image in raster format, and the “labels” are sets of regions of pixels denoting,
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for example, objects of interest within the image.

• Sequential/temporal structure:In a natural language tagging application, the input consists of
a sequence of words and the output is a sequence of tags, one for each word. The ordering of
elements in both input and output is important. Defining sequencing on input vs. output may
be very different, as in e.g. an optical character recognition application.

• Hierarchical structure:Natural language parsers produce syntactic trees as their output.

• Combinatorial structure:Machine translation applications often usealignments—bipartite
graphs that show the correspondence of each word or phrase in the source language to a word
or phrase in the target language.

The classification above is not exhaustive because arbitrary kinds of structural constraints may
be added to inputs, outputs, or their combination.

The machine learning approaches that we have discussed until now build an estimate of the
conditional probabilityp(y|x), usually in form of a probability distribution over the discrete labels
{1, . . . , ℓ}. A natural extension of this approach to structured data is to analytically definep(y|x)
as a parameterized function that obeys by definition the structural constraints ofX andY. Then,
parameter estimation by using e.g. gradient-based or maximum-margin techniquesaccomplishes the
learning task. This approach has been successfully used in maximum-marginMarkov models [215],
kernel conditional random fields [131], hidden Markov support vector machines [6], and support
vector machines for structured output spaces [218].

Another possibility is to forego analytic definition forp(y|x) and instead focus on regressing a
real-valuedscoringfunctions. Such a scoring function accepts a pair of input and output data and
computes a real-valued score:

s : X × Y → R ∪ {−∞} (4.1)

The scoring function encapsulates all structural constraints and yields larger numbers for better
matched pairs of inputs and outputs; the nature of the scoring function is thatit always fulfills
whatever structural constraints must be satisfied byx andy. Training data pairs are considered
highly feasible so they are assigned high values ofs. Conversely, infeasible, unlikely, or unwanted
pairs are assigned low values ofs. For completeness, if a pair〈〈x, y〉〉 does not satisfy the structural
constraints,s(x, y) , −∞. Given this setup, estimated structured labels are obtained by solving:

ŷ = arg max
y∈Y

s(x, y) (4.2)

Often it is possible that not all pairs inX × Y are feasible. Some applications denote

Y(x) , {y ∈ Y | s(x, y) 6= −∞} (4.3)

which eliminates a priori unfeasible combinations from the search space, in which case the learning
problem can be reformulated as

ŷ = arg max
y∈Y(x)

s(x, y) (4.4)
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The definition ofs and the method of estimating thearg max function are application-specific.
The functions is unable to emit estimated labelsŷ directly; instead, it learns an estimate of how
good a given feature/label pair is. Therefore, using a scoring method for structured learning requires
the existence of ahypothesis generator functionχ.

χ : X → F(Y) (4.5)

whereF(Y) is the finite power set of the (potentially infinite) setY:

F(Y) = {A ∈ P(Y) | card(A) <∞} (4.6)

The disadvantage of a score-based formulation of structured learning isthat the method is not
complete in that it must work in tandem with a hypothesis generator, which poses its own learning
problems. The advantage of the approach is that it allows using unstructured real-valued function
regression algorithms with structured data. Such a learning problem is oftensimple and may scale
well to large problems. In contrast, an approach that mapsX to Y directly is often complex and
difficult to scale.

That the codomain ofχ consists of finite sets is an important detail from both a theoretical
and a practical perspective. Theoretically, a finite codomain ofχ makes it possible to define finite
similarity graphs and therefore apply graph-based learning. Practically,reducing the search space
for y increases the speed of search considerably regardless of the method used. The hypothesis
generatorχ is usually a generative learning system that is fast and has good recall, but lacks in
precision (has false positives).

4.2 Graph-Based Semi-Supervised Formulation

As we have shown in Chapter 2, label propagation is capable of learning the harmonic function over
a graph starting from a few vertices where the value of the function is constrained (the training, la-
beled vertices). Until now the learned function modeled probability values exclusively. Assembling
several probability values in normalized vectors modeled probability distributions over sets of mu-
tually exclusive labels. The scoring-based approach to structured learning provides an opportunity
to apply graph-based methods to structured learning problems by regressing the scoring functions
directly instead of computing probabilities. To build a graph, we need to definea similarity function
between input-output pairs:

σ : (X × Y)× (X × Y)→ R+ (4.7)

Alternatively, we could define a distance function with the same domain and codomain, and then
apply the Gaussian kernel to it for obtaining similarities, as we did in Chapter 3.Choosing between
similarity and distance depends on the nature ofX andY; for the applications we discuss below, the
most natural approach is to define a similarity directly.

Givenσ, a similarity graph containing the training data and the test hypotheses for a given sam-
ple can be constructed. Each vertex represents either a pair of input and output values〈〈xi, yi〉〉
obtained from the training set, or a test hypothesis〈〈xi, (χ (xi))j〉〉 . Instead of the continuous prob-
ability distributions associated with labels, this time there will be only one continuousreal-valued



47

“label” associated with each vertex, the scoring functions. The scores will be learned by the appli-
cation of a graph-based semi-supervised learning method such as label propagation.

To understand how label propagation works for regressing a function, consider again the cost
function, a.k.a. smoothness (Eq. 2.23), that the label propagation algorithm minimizes:

S =
∑

i,j∈{1,...,t+u}
i>t ∨ j>t

k∈{1,...,ℓ}

wij (fik − fjk)
2 (4.8)

under the constraint (recall thatδN (n) is a Kronecker delta vector of lengthN valued at 1 in posi-
tion n and 0 elsewhere):

frow i = δℓ(yi) ∀i ∈ {1, . . . , t} (4.9)

In our case there is only one label to compute (the score itself) soℓ = 1, the weightswij are
values of the similarity functionσ( 〈〈xi, yi〉〉 , 〈〈xj , yj〉〉 ), the δℓ(yi) vectors become the training
scoress(xi, yi) ∀i ∈ {1, . . . , t}, and thef matrix (in our case degenerating to a column vector)
contains values of thes function, resulting after substitution in:

S =
∑

i,j∈{1,...,t+u}
i>t ∨ j>t

σ( 〈〈xi, yi〉〉 , 〈〈xj , yj〉〉 ) (s(xi, yi)− s(xj , yj))
2 (4.10)

The constraint is now implicit in the immutability of train scores; the constrained intermediate
matrixf has disappeared entirely.

Similar to the probability case,S is a proper loss to minimize because it penalizes inconsis-
tent score assignments—those that score highly similar regions with abruptly-varying score values.
Score values diffuse from labeled vertices and follow the high- and low-density regions on the man-
ifold built by σ. We can now formalize structured graph-based learning as follows.

Definition 4.2.1 (Graph-Based Formulation of Structured Learning for Regression). Consider a
structured learning problem defined by featuresX = 〈〈x1, . . . , xt+u〉〉 ⊂ X t+u, training labels
Y = 〈〈y1, . . . , yt〉〉 ⊂ Yt, corresponding training scores〈〈s1, . . . , st〉〉 ∈ R

t, similarity function
σ : (X × Y) × (X × Y) → [0, 1], and hypothesis generator functionχ : X → F(Y). We define
the similarity graph for the structured learning problem as an undirected weighted graph with real-
valued vertex labels, constructed as follows:

• add one vertexvi for each training pair sample〈〈xi, yi〉〉 ∀i ∈ {1, . . . , t}, labeled with the
scoresi (training pair samples have predefined scores);

• add one vertexvij (with unknown score, initially set to 0) for each pair consisting of a test sam-
plexi and a hypothesis(χ(xi))j , wherei ∈ {t+1, . . . , t+u} andj ∈ {1, . . . , card(χ(xi))};

• for each test vertexvij and each training vertexvk, define one edge with the weight

wijk = σ( 〈〈xi, (χ(xi))j〉〉 , 〈〈xk, yk〉〉 ) (4.11)
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• for each pair of test verticesvij andvkl, define an edge linking them with weight

wijkl = σ( 〈〈xi, (χ(xi))j〉〉 , 〈〈xk, (χ(xk))l〉〉 ) (4.12)

The structural constraints ofX×Y have not disappeared—they are now folded into the definition
of σ, which bridges the structure of the input space with the unstructured regression framework.
Devising good definitions ofσ is the concern of the following sections.

4.2.1 Learning With Only Positive Examples

The similarity graph for structured learning as per Definition 4.2.1 needs the training scores
〈〈s1, . . . , st〉〉 ∈ R

t. Certain problems naturally present the learning system with such scores.
For example, in a sentiment categorization application [178] such as a movie review system, train-
ing data may consist of a set of sentences accompanied by an integer-valued rating from 0 (very
unfavorable) to 3 (very favorable). Test data consists of texts withoutan explicit rating. Such a
setup allows using graph-based learning to regress a real-valued scoring function that is a contin-
uous extension of the integral training scores. After regression, test scores can be kept as such or
discretized, by rounding, back to the same integer values as in training. Thisapplication has been
demonstrated by Goldberg and Zhu [93].

In other learning problems, the train set contains examples and counter-examples, i.e. “good”
training pairs 〈〈x, y〉〉+ and “bad” training pairs〈〈x, y〉〉−. In such situations, a common approach is
to assign each positive training sample a constant high scores+, and each negative training sample
a constant low scores−. Then regression learns a real-valued function with range[s−, s+]. A
given test sample will be “pulled” towards the positive or negative verticesas dictated by the graph
structure. The actual constantss− ands+ dictate the highest and lowest score received by any test
sample—in label propagation, all learned scores will fall in between these limitsby the maximum
principle of harmonic functions [1]. Aside from the obvious requirements− < s+, there are no
other restrictions with regard to choosing these values; we are only interested in their ordering. Some
applications define limits such as−1 and1 or 0 and1. In keeping with our previous application
when the computed scores had probability semantics, we chooses− = 0 ands+ = 1 throughout
this chapter.

Many structured learning problems, however, only define a training set containing only positive
examples, that is, correct pairs〈〈xi, yi〉〉 ∀i ∈ {1, . . . , t}. Moreover, all training pairs areequally
realizable, desirable, or “good” (there is no confidence information associated with the training
data). It would appear that only a little change in setup is needed: assign thehigh score (s+ = 1)
to all training samples and leave no sample with scores− = 0. This näıve setup is, however, ill-
advised: In the absence of negative samples with low scores, label propagation will promptly learn
the scoring function that minimizesS down to zero—the constant function valued at1 at all points.
The traditional setup of label propagation that we described in § 2.3.2 did not have this problem
because the system predicted probability distributions over multiple and mutually exclusive labels;
a training sample carrying one label was automatically a negative sample for allother labels.

Automatic generation of negative samples is an option for certain problems, but one that
should be approached carefully because not all negative samples areuseful, particularly in high-
dimensional spaces. Consider a structured problem whereX × Y is such a large space. Then, by
necessity, the actual train data and test hypotheses points will only fill a smallportion of that space.
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(If the learning problem is formulated properly for graph-based learning, the training data and the
correct hypotheses will form a lower-dimensional manifold in that space.)Generating random hy-
potheses would simply place random points in that sparsely populated space, a strategy that falls
prey to the curse of dimensionality: those random points will be equally far from any correct hy-
potheses and incorrect ones, and as such will be uninformative. A “good negative” example must
be dissimilar with all positive training pairs (which is easy to accomplish) but alsosimilar with the
incorrect or inferior pairs predicted by the hypothesis generatorχ. Such a generator would need to
follow the characteristic of the hypothesis generator and its proneness to making systematic errors,
a requirement that is difficult to fulfill.

We will use a different approach that avoids the necessity of generatingnegative samples. The
idea is toinfer negative samples by exploiting information provided by the similarity functionσ. For
each training sample〈〈xi, yi〉〉 , i ∈ {1, . . . , t}, we construct not only one vertexvi+ as prescribed
by standard graph construction (“the positive vertex”), but also one extra “negative” vertexvi−.
The score assigned tovi+ is alwayss+ = 1, whereas the score assigned tovi− is alwayss− = 0.
“Positive” and “negative” for vertices refers to them representing positive (realizable) vs. negative
(unrealizable) training samples, not a mathematical sign. In fact, given ourchoice of scoress+ = 1
ands− = 0, a more evocative nomenclature would be “positive” and “ground,” justified by the
electric circuit analogy [68] that we discuss further in § 4.4.5. Having constructed the extra training
verticesvi−, we must connect them to the rest of the graph. To do so, we compute edgeweights
from the edge weights linking each sample to thevi− vertices. First we require that the similarity
functionσ is bounded to the finite closed range[s−, s+]:

σ : (X × Y)× (X × Y)→ [s−, s+] (4.13)

We assume that wheneverσ evaluates tos− that means the involved samples are entirely dis-
similar, and wheneverσ evaluates tos+ that means the samples are entirely similar (or better put,
equivalent for the purposes of comparing for similarity). Then we rely onthe simple observation
that, under these assumptions, a test pair〈〈xj , yj〉〉 , j ∈ {t+1, . . . , t + u}, that is similar to a train-
ing pair 〈〈xi, yi〉〉 , i ∈ {1, . . . , t}, with similarity valuesij , can also be considered dissimilar to the
same training pair to the extents′ij , 1−sij . Put another way, the test pair〈〈xj , yj〉〉 can be consid-
eredsimilar to the extent1− sij with an imaginary negative sample that complements the training
point 〈〈xi, yi〉〉 . So the positive samples plus the bounded similarity value provide enough infor-
mation for graph-based learning if we add one synthetic negative training sample for each positive
training sample and amend the similarity function appropriately.

We will formalize these considerations in the definition below.

Definition 4.2.2 (Graph-Based Formulation of Structured Learning with Only Positive Training
Samples). Consider a structured learning problem defined by featuresX = 〈〈x1, . . . , xt+u〉〉 ⊂
X t+u, training labelsY = 〈〈y1, . . . , yt〉〉 ⊂ Yt, similarity functionσ : (X ×Y)×(X ×Y)→ [0, 1],
and hypothesis generator functionχ : X → F(Y). A similarity graph for the structured learning
problem is an undirected weighted graph with real-valued vertex labels, constructed as follows:

• add one labeled vertexvi+ for each training pair sample〈〈xi, yi〉〉 ∀i ∈ {1, . . . , t}, with the
label equal to 1;

• add one labeled vertexvi− for each training pair sample〈〈xi, yi〉〉 ∀i ∈ {1, . . . , t}, with the
label equal to 0;
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• add one test vertexvij for each test sample consisting of a pointxi and a hypothesis(χ(xi))j ,
wherei ∈ {t + 1, . . . , t + u} andj ∈ {1, . . . , card (χ(xi))};

• for each test vertex vij and each training verticesvk+ and vk−, if
σ( 〈〈xi, (χ(xi))j〉〉 , 〈〈xk, yk〉〉 ) > 0, define one edge linkingvij to vk+ and one link-
ing vij to vk−, with the respective weights

wijk+ = σ( 〈〈xi, (χ(xi))j〉〉 , 〈〈xk, yk〉〉 ) (4.14)

wijk− = 1− wijk+ (4.15)

• for each pair of test verticesvij andvkl, if vij 6= vkl, define an edge linking them with weight

wijkl = σ( 〈〈xi, (χ(xi))j〉〉 , 〈〈xk, (χ(xk))l〉〉 ) (4.16)

The resulting graph has paths passing from the training source vertices totheir corresponding
sink vertices through test vertices. The semi-supervised effect is brought about by the additional
connections between test vertices. In practice, the graph (which might bevery dense) may be
approximated by only keeping its strongest edges.

One decision that needs close scrutiny is the choice of a linear function forthe weight assign-
mentswijk− = 1−wijk+. The basic requirement is just a monotonically decreasing function defined
on [0, 1] and with a range in[0, 1]. Many monotonically decreasing functions could be chosen to
map the range[0, 1] onto itself, and the choice of a linear function must be justified appropriately.
We show below that the choice is well grounded because, save for the semi-supervised effect, it
computess assignments consistent with the overall similarity with the training set, as proved inthe
theorem below. The theorem ignores for now any semi-supervised effect (induced by edges linking
different hypotheses) and applies to the supervised subproblem. In that case we show that choosing
the linear function in Eq. 4.15 leads to a sensible result: the score assignmentfor a given sample
is, in fact, the averaged similarity between that sample and the training samples withwhich it bears
similarity.

Theorem 4.2.3. Consider a similarity graph for structured learning defined for featuresX =
〈〈x1, . . . , xt+u〉〉 , positive training labelsY = 〈〈y1, . . . , yt〉〉 , similarity functionσ : (X × Y) ×
(X × Y) → [0, 1], and hypothesis generator functionχ : X → F(Y). Then, if all unlabeled-
unlabeled edges are zero, label propagation will yield as solution the scores:

s( 〈〈xi, (χ(xi))j〉〉 ) =
1

Cij

t∑

k=1

σ( 〈〈xi, (χ(xi))j〉〉 , 〈〈xk, yk〉〉 ) (4.17)

whereCij is the count of labeled verticesk for whichσ( 〈〈xi, (χ(xi))j〉〉 , 〈〈xk, yk〉〉 ) > 0.

Proof. We have shown that the harmonic function over the graph is unique and we also know that
label propagation computes the harmonic function, so all we need to show is that the value in the
hypothesis satisfies the harmonic property. A given vertexvij hasCij edges to source verticesvijk+
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∀k ∈ {1, . . . , Cij}, and anotherCij edges to sink verticesvijk′+ ∀k′ ∈ {1, . . . , Cij}. The weighted
average of these two connections is

aij ,

Cij∑

k=1

wijk+s(vk+) +

Cij∑

k=1

wijk−s(vk−)

Cij∑

k=1

wijk+ +

Cij∑

k=1

wijk−

(4.18)

wherewijk+ andwijk− are the weights of the edges linking vertexvij to verticesvijk+ andvijk−,
respectively. In our case the scoress(vk+) are all zero so they nullify the second sum in the de-
nominator. Also, from the definition,wijk+ + wijk− = 1 so the denominator sums up toCij , so we
obtain

aij =
1

Cij

t∑

k=1

wij+s(vk+) (4.19)

which is exactly the harmonic condition. Sos satisfies the harmonic property and, being unique, is
the function computed by label propagation.

This result shows that choosing the linear relationwijk− = 1 − wijk+ in Definition 4.2.2 leads
to score assignments that (ignoring semi-supervised effect induced by unlabeled-unlabeled connec-
tions) are equal to the average similarity of each that hypothesis with the training samples it is
similar to. Convergence to the trivial solution (s = 1 for all samples) has been avoided, and the
scoring obtained is consistent with our notion of similarity: hypotheses that are more similar to
some samples in the training set will receive higher scores.

The presence of unlabeled-to-unlabeled connections may improve scorequality under the mani-
fold assumptions discussed in Chapter 2: graph-based learning enforces not only consistency of the
score across training and test data, but also across the test samples.

The resulting graph has a large number of vertices, two for each training sample and one for each
hypothesis. Even if nearest-neighbor techniques are used for limiting the connectivity, scalability
might become an issue. We introduce in § 5.5 a means to reduce the number of vertices by orders
of magnitude without affecting the result of the learning process.

4.3 Similarity Functions for Structured Inputs and Outputs

In the formulation given above, the performance of the approach hingeson defining a good similarity
functionσ. A good similarity function should properly handle the structured nature of inputs and
outputs, ultimately making for an expressive, smooth similarity.

Defining similarity across structured spaces is a recurring problem that has many applications
beyond graph-based learning. This section provides a brief overviewof such similarity functions.
Many of the recently-studied similarity functions arekernel functions—functions that can be ex-
pressed as a dot product between two vectors associated with the inputs through a mapping func-
tions. Section 4.3.1.3 introduces formal definitions for kernel functions. For graph-based learning
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it is not necessary that the similarity function is a kernel function (the only requirements are pos-
itive and symmetric), but kernel functions have many desirable properties, notably an expressive
representation and efficient evaluation.

Sequence Kernels Sequence kernels are a direct generalization of the traditional fixed-length fea-
ture vectors. Instead of defining one sample as one vectorx ∈ R

n, sequence kernels define a sample
as a variable-length catenation of such vectors, i.e.

x = 〈〈x(1), x(2), ..., x(k)〉〉 (4.20)

x(i) ∈ R
n ∀i ∈ {1, . . . , k} (4.21)

wheren ∈ N
∗ is a constant butk ∈ N is a sample-dependent variable.

Sequence kernels have found natural applicability to systems using speech as inputs, for speech
is a variable-length signal consisting of real-valued vectors (e.g. the cepstral coefficients [66, Ch. 6]).
Campbell et al. [39] defined a sequence kernel suitable for training a Support Vector Machine along
with an efficient mean-squared error training criterion method. They applied the sequence kernel to
speaker recognition and language recognition tasks. Solomonoff et al. [205] used a similar setup to
prevent loss of performance of a speaker recognition system in the presence of variations of handset
and channel characteristics.

String Kernels String kernels are similarity functions defined over variable-length catenations of
symbols extracted from a finite alphabet. There is some amount of confusionin literature about
stringkernels vs.sequencekernels, terms that are often used interchangeably. We consistently refer
to sequence kernels as kernels over variable-length catenations of vectors of real numbers, and to
string kernels as kernels over variable-length catenations of symbols extracted from afinitealphabet.

A simple example of a string kernel would be a 0/1 similarity that compares for lexicographic
equality, but such a function would be too non-smooth to have any interestingproperties. Edit dis-
tance gives a better notion of similarity than the 0/1 similarity, as do many other non-exact match
measures. Naturally, string kernels are of particular interest to Human Language Technology appli-
cations because strings model human language text directly. Section § 4.4.5 discusses string kernels
in detail, as they will be used in our application of Graph-Based Learning to Statistical Machine
Translation.

Convolution Kernels Haussler [102] established a formalism for defining kernels over structured
data having countable sets as support, including strings, trees, and graphs. His work was predated
by research on string kernels, which he generalized into a framework also applicable to trees and
graphs. A convolution kernel defines a kernel over a structure in termsof kernel evaluations on parts
of that structure.

Tree Kernels Tree kernels are similarity measures between trees and are also of interestto Nat-
ural Language Processing because of their applicability to syntax trees.Collins and Duffy [51]
describe tree kernels with NLP applications under the framework of convolution kernels and show
applications to parse trees. Culotta and Sorensen [60] applied tree kernels to a relation extraction
task. Vishwanathan and Smola [223] take the route of transforming the treesinto strings by using a
non-ambiguous mapping, followed by use of regular string kernels for tree comparison.
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Graph Kernels Given that strings are restricted trees and trees are restricted graphs,a natural
further generalization of structured kernels is defining similarities over graphs. (Graph kernels are
not directly related to Graph-Based Learning.) Due to the formidable expressive power of graphs,
graph kernels are the most difficult to define. In 2003, Gartner et al. [88] have shown that any sim-
ilarity function on graphs that can fully recognize graph structure is NP-hard and also have shown
that approximate matches are computable in polynomial time. One similarity criterion is based on
the lengths of all walks between two vertices, and the other is based on the number of occurrences
of given label sequences in labeled graphs (the more label sequencestwo labeled graphs have in
common, the more similar they are deemed). Kashima and Inokuchi [115] define an approximate
kernel by means of random walks of finite lengths and subsequently applyit to classification of
chemical compounds [116]. Cortes et al. [53] introduced rational kernels, which operate efficiently
on weighted transducers. Graph kernels are of interest to a host of Human Language Technology
applications because graphs occur naturally in many input and output representations: many NLP
tools produce syntactic and semantic information (such as named entities, dependency structures,
anaphora, discourse relations) that can be most gainfully exploited in a graph framework [212]; fi-
nite state transducers are used in several HLT areas [165]; and the word or phrase alignments used
by today’s SMT systems form a bipartite graph.

Choosing a Kernel for Statistical Machine Translation We propose below an application of
structured Graph-Based Learning to Statistical Machine Translation. Forthis kind of application,
the inputs and outputs are sentences, which are highly structured entities, so either string, tree, or
graph kernels could be investigated as candidates forσ. Of these, we chose string kernels because
they are the simplest to operate with, most scalable, and most directly related to the most common
automatic evaluation criterion for Statistical Machine Translation (SMT) (as discussed in 4.4.7).
Before describing our proposed application of graph-based learningto SMT, we will discuss string
kernels (our similarity measure of choice) in detail.

4.3.1 Kernel Methods

String kernels are an instance of kernel functions, an important concept of modern machine learn-
ing. This section introduces the appropriate background. Kernel methods [103] form a category
of machine learning methods that has received increasing attention in the past years. This section
reviews the main ideas behind kernel methods and builds background necessary to introduce string
kernels, which in turn are the basis of our similarity measure.

Positive definite kernels are motivated by the need to apply linear methods to machine learn-
ing problems that can be best tackled by nonlinear systems. The kernel-based method essentially
consists of mapping the input space to a different space, called the mappedspace or thefeature
space. Afterwards, the linear machine learning method is used in that space. Although the learned
function (e.g. a classification boundary) is linear, the transform is nonlinear so the relationship be-
tween the learned function and input space is nonlinear as well, leading, for example, to a curved
decision boundary obtained through a linear classification algorithm. The mapping function must
have properties that make it a good choice for the input space and is a good place to introduce
problem-specific knowledge into the learning process. Also, efficient learning must be possible,
which restricts both the mapping and the learning method in ways we will describebelow. We first
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define a kernel function formally.

Definition 4.3.1. Consider a functionκ : X × X → R. If there exists a Hilbert spaceH and a
functionΦ : X → H such that

κ(x, x′) =
〈
Φ(x), Φ(x′)

〉
∀x, x′ ∈ X (4.22)

then we callκ a kernel function, Φ a feature mapof κ, andH the feature spaceassociated withκ
andΦ.

Choosing the right kernel for a given problem is an active area of research. Using a kernel
functionκ becomes advantageous under the following circumstances:

• The original linear machine learning method defines a dot product
〈
x, x′

〉
=

d∑

i=1

x[i]x
′
[i] onR

d

and uses the dot product exclusively in calculations;

• The mapped spaceH is arguably a feature representation that is better amenable to linear
methods (e.g., hyperplane separation) than the original spaceX .

For example, the mappingΦ : R
2 → R

3, Φ( 〈〈x1, x2〉〉 ) = 〈〈x2
1,
√

2x1x2, x
2
2〉〉 allows a plane

in three dimensions to separate points that would be separated by an ellipsis in the original bi-
dimensional space. Furthermore, the dot product in the mapped space is simply the square of the
dot product in the initial space, as can be readily shown through simple algebraic manipulation. This
means that a method that learns a separating hyperplane (e.g. a Support Vector Machine [32]) can
be used for planar radial separation at virtually no added computational cost, in spite of it working
in a higher-dimensional “intermediate” space.

To show that a given functionκ is a kernel, it is necessary to defineH and Φ analytically
and show that the fundamental relationship in Eq. 4.22 holds. That might sometimes be difficult,
so the question arose of finding out whether a functionκ is a kernel by verifying properties ofκ
directly. The functions that are equivalent to dot products in mapped spaces are calledpositive
definite functions, which we define below. The proof of equivalence between kernel functions and
positive definite functions can be found in literature [103, 159, 59].

Definition 4.3.2. A real symmetric matrixM ∈ R
n×n satisfying

∑

i,j

cicjMij ≥ 0 ∀k ∈

N
∗, 〈〈c1, . . . , ck〉〉 ∈ R

k is calledpositive definite. A function κ : X × X → R for which the
matrixKij , κ(xi, xj) (called the Gram matrix) is positive definite∀n ∈ N

∗, 〈〈x1, . . . , xn〉〉 ∈ X n

is called apositive definitefunction.

Substituting positive definite functions for dot products in machine learning algorithms auto-
matically introduces mapped spaces and uses them in learning. Also, as kernels usually come in
simple analytic form, they provide much faster evaluation than actually computing inner products
in the mapped space directly. In fact the mapped space might be infinite-dimensional. Due to its
remarkable effect of mapping the original features into a much more expressive feature space at a
low cost, said substitution is called “the kernel trick” in the machine learning community.
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The connection of kernel methods with graph-based learning becomes apparent if we observe
that the usual similarity function defining the graph in Eq. 2.1

wij = exp

[

−d(xi, xj)
2

α2

]

(4.23)

is, in fact, a kernel function [103].
Of particular interest to kernel methods are thereproducing kernel Hilbert spaces[62, 72], for

which the mapped space has the formH = X → R and is associated with a continuous kernelκ.
The corresponding inner product is:

〈
Φ(x), Φ(x′)

〉
=

∫

X
Φy(x)Φy(x

′)dy (4.24)

if X is continuous, and
〈
Φ(x), Φ(x′)

〉
=
∑

y∈X

Φy(x)Φy(x
′) (4.25)

if X is discrete (whether finite or not). Our next sections are concerned with defining reproducing
kernel Hilbert spaces over discrete spaces only with the kernel value defined as per Eq. 4.25.

4.3.1.1 Normalized Kernels

For any kernel function, the inner product space defined by the mapping Φ is complete under the
following norm definition [171, 187]:

‖Φ(x)‖ =
√

〈Φ(x), Φ(x)〉 =
√

κ(x, x) (4.26)

It is easy to verify that the properties of the norm are satisfied following thedefinition of a
positive definite function, so any Hilbert space is also a Banach space withnorm‖Φ‖. (However
not all Banach spaces can define a corresponding dot product.)

By the Cauchy-Schwartz inequality [171], we have:
∣
∣
〈
Φ(x), Φ(x′)

〉∣
∣ ≤ ‖Φ(x)‖ · ‖Φ(x′)‖ (4.27)

∣
∣κ(x, x′)

∣
∣ ≤

√

κ(x, x)κ(x′, x′) (4.28)

which implies that the normalized kernel is bound within[−1, 1] (or [0, 1] if all kernel values are
nonnegative, as is often the case). To introduce normalization, we need todefine a distinguished
subset ofX as follows.

Definition 4.3.3. Given a kernel functionκ defined on setX , we define thenonsingular kernel
subset, denotedX κ∗, as:

X κ∗ , X \ {x ∈ X | κ(x, x) = 0} (4.29)

For any kernel,κ(x, x) = 0 ⇒ x = 0, but we definedX κ∗ as depending onκ(x, x) = 0 as
opposed tox = 0 because there are kernels that do not evaluate to 0 even in the origin (forwhich
consequentlyX = X κ∗).
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Definition 4.3.4. We define thenormalized feature map̂Φ:

Φ̂(x) : X κ∗ → R
X Φ̂(x) =

Φ(x)

‖Φ(x)‖ (4.30)

The function is well defined because the denominator is never 0; in fact it iseasy to verify that

‖Φ̂(x)‖ = 1 ∀x ∈ X κ∗ (4.31)

The functionalΦ̂ is a feature map of thenormalized kernel̂κ : X κ∗ ×X κ∗ → R.

κ̂(x, x′) =
〈

Φ̂(x), Φ̂(x′)
〉

=

〈
Φ(x)

‖Φ(x)‖ ,
Φ(x′)

‖Φ(x′)‖

〉

=
〈Φ(x), Φ(x′)〉
‖Φ(x)‖ · ‖Φ(x′)‖ (4.32)

=
κ(x, x′)

√

κ(x, x) · κ(x′, x′)
(4.33)

Normalized kernels are important to the study of kernel methods because they often eliminate
the dependency of kernel’s value on inconsequential characteristics of the inputs, such as size or
sparseness, and also allow for easier combination with other similarity measures. Without normal-
ization, kernel evaluation would yield values that only give a relative notionof similarity. Also, a
normalized kernel engenders a distance with metric properties overX κ∗, as we will show in the next
section.

4.3.1.2 Relationship with Distance

Given a kernel functionκ defined on a discrete setX with the mappingΦ with values in a reproduc-
ing kernel Hilbert space, consider computing the Euclidean distance between two points in mapped
space:

dκ

(
x, x′

)
=

√
∑

w∈X

(Φw(x)− Φw(x′))2 (4.34)

=

√
∑

w∈X

Φw(x)2 − 2
∑

w∈X

Φw(x)Φw(x′) +
∑

w∈X

Φw(x′)2 (4.35)

=
√

κ(x, x)− 2κ(x, x′) + κ(x′, x′) (4.36)

Following a similar expansion, the normalized distance computes as follows:

d̂κ

(
x, x′

)
=
√

κ̂(x, x)− 2κ̂(x, x′) + κ̂(x′, x′) (4.37)

By the definition of̂κ, κ̂(x, x) = κ̂(x′, x′) = 1, so

d̂κ

(
x, x′

)
=
√

2− 2κ̂(x, x′) (4.38)

As Euclidean distances,dκ and d̂κ readily satisfy the metric properties (§ 3.4) directly from
their definition. This is of high practical interest because many algorithms forfast nearest neighbors
searching require at least a subset of the metric properties. For example, the kd-tree data structure
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that we use in Chapter 5 for accelerating nearest neighbor computation, requires properties that
Euclidean distance fulfills.

However, finding the closest neighbors according todκ does not necessarily find the most similar
items:dκ(x, x′) < dκ(x, x′′) that does not necessarily implyκ(x, x′) > κ(x, x′′), i.e., kernel values
are not in a monotonic relationship with the corresponding distances. Here iswhere normalization
comes into play powerfully. We prove a simple theorem below that is of importance to practical
approaches.

Theorem 4.3.5.Consider a kernel(κ, Φ) and pointsx, x′, x′′ ∈ X κ∗. If d̂κ(x, x′) < d̂κ(x, x′′), then
κ̂(x, x′) > κ̂(x, x′′).

Proof. We take the difference of squaresd̂κ(x, x′′)2 − d̂κ(x, x′)2 applying their simplified form in
Eq. 4.38:

d̂κ(x, x′′)2 − d̂κ(x, x′)2 = 2(κ̂(x, x′)− κ̂(x, x′′)) (4.39)

d̂κ is a metric sod̂κ(x) ≥ 0 ∀x ∈ X κ∗. Consequently,̂dκ(x, x′′) > d̂κ(x, x′) ⇔ d̂κ(x, x′′)2 >
d̂κ(x, x′)2, which immediately leads to the conclusionκ̂(x, x′)− κ̂(x, x′′) > 0.

Practically, Theorem 4.3.5 shows that using a nearest-neighbors according to the normalized
distanced̂κ will find the most similar samples in a data set if it takes the precaution of eliminating
points for whichκ(x, x) = 0 (if any) from the potential candidates in the search. This is achieved
easily in practice with negligible computational cost.

4.3.1.3 String Kernels

At the highest level, string kernels are simply kernel functions defined onX = Σ∗ for some discrete
vocabularyΣ. Use of mappings and similarity measures defined onΣ∗ and akin to kernels was
already widespread with strings prior to the introduction of kernel methods.For example, consider
the following map:

Φ : Σ∗ → R
Σ Φw(s) = card {v, v′ ∈ Σ∗ | s = vwv′} (4.40)

We use the notationRΣ as a shortcut for(Σ → R), i.e., the set of functions defined onΣ
with values inR. Also, we use the notationΦw(s) as a shortcut for the longer, more explicit
notation[Φ(s)] (w), which reveals thatΦ is a functional applied tos yielding a function that in turn is
applied tow. The shortcut notations are a generalization of the usual notations in multidimensional
Euclidean spaces (R

n andxk, respectively).
Eq. 4.40 defines a mapping that describes strings solely through the wordsthey contain, without

regard to their order, modeling technique known as the “bag-of-words”model (or, depending on
the vocabulary used, “bag-of-characters”). Ifs is large (e.g., an entire document), word frequency
has been shown to be a good predictor for the topic covered if the words are stemmed and if stop
words (e.g., “and”, “not”) are eliminated [142, 109]. Taking the inner product in the corresponding
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normalized mapped space yields:

〈

Φ̂(s), Φ̂(t)
〉

=
〈Φ(s), Φ(t)〉
‖Φ(s)‖ · ‖Φ(t)‖ =

∑

w∈Σ

Φw(s)Φw(t)

√
√
√
√

(
∑

w∈Σ

Φw(s)2

)(
∑

w∈Σ

Φw(t)2

) (4.41)

which is nothing butcosine similarity, the popular similarity measure used in Information Re-
trieval [155] and NLP [200]. Joachims has first used the kernel properties of cosine similarity
in a document categorization task using a Support Vector Machine as a classifier [109]. It is worth
noting that in this case the kernel trick is not of use because the feature space is explicit and the ker-
nel is computed directly as an inner product in feature space. The inner product can be completed in
O (|Σ|) time if preprocessing extracts sorted feature vectors, computable in turn inO (|s| · log |s|)
time for each input strings.

The p-Spectrum Kernel (n-gram kernel) Leslie et al. [139] introduced, in the context of a pro-
tein classification task, a direct generalization of the bag-of-words kernel that maps a string into
the space of all possible strings of length exactlyp. The kernel is also called then-gram kernel in
the NLP literature [92], for obvious reasons. The feature of a strings at coordinateu ∈ Σp is the
number of occurrences ofu in s.

Φ : Σ∗ → R
Σp

Φw(s) = card {v, v′ ∈ Σ∗ | s = vwv′} (4.42)

This definition is very similar to the bag-of-words kernel in Eq. 4.40, with the essential difference
that in this casew is a fixed-length string of lengthp, whereas in Eq. 4.40 it is a single element ofΣ.
The inner product is computed in the expected manner:

κ(s, t) =
∑

w∈Σp

Φw(s)Φw(t) (4.43)

In this case the kernel trick is highly useful for computing the inner product, as enumerating
all p-length substrings and matching them would take time exponential inp. Better approaches
have been proposed that rely on preprocessing the strings into informative structures in linear time.
Leslie et al. [139] built a trie data structure [26] out of one of the strings and achieved an overall
time complexity ofO (p (|s|+ |t|)). Using a generalized suffix tree [189, 223] reduces complexity
toO (|s|+ |t|).

The Mismatch Kernel Leslie et al. also introduced the mismatch kernel [140], which is similar
to thep-spectrum kernel but makes the similarity measure smoother by allowing up to a constant
m < p mismatches in the substrings of lengthp. The mapping function is:

Φw(s) = card
{
v, v′ ∈ Σ∗ | s = vuv′ ∧ |u| = p ∧m ≥ card {i ∈ {1, . . . , p} | wi 6= ui}

}
(4.44)

The innercard function counts the mismatches between two strings of lengthp. The outercard
therefore counts all possible substringsu ∈ Σp of s that are withinm mismatches from coordinate
stringw.
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The implementation defines and uses a mismatch tree which is akin to a suffix tree [97]. The
overall complexity obtained wasO ((|s|+ |t|) km|Σ|m). Leslie and Kuang [138] subsequently in-
troduced two more variations on the mismatch kernel: the substitution kernel, which models the
probability of replacing one symbol with another, and wildcard kernel, which allows up tom in-
stances of a special wildcard character in the match. All of these models havetrie-based implemen-
tations and similar complexity profiles.

The n-Length Gap-Weighted String Kernel The mismatch kernel suggests further generaliza-
tion to kernels that support arbitrary insertions of extra symbols in either ofthe strings, which opens
the door togapped string kernels, a family of string kernels of particular interest to NLP at large
and to Statistical Machine Translation in particular. In order to describe gapped string kernels, we
will first give a few additional definitions.

Definition 4.3.6. The strings[i : j], 1 ≤ i ≤ j ≤ |s| is the substringsi...sj of s. We say thatt is a
gapped subsequenceof s with indices vectori (denoted ast = s[i]) if ∃i = 〈〈i1, . . . , i|u|〉〉 ∈ N

|u|

with 1 ≤ i1 < . . . < i|t| ≤ |s| such thattj = sij ∀j ∈ {1, . . . , |t|}. The length of the gapped
subsequencet with indices vectori is i|t| − i1 + 1. Σn is the set of all sequences of lengthn.

(We observe the convention prevalent in recent literature to consistently imply contiguity when
discussing “substrings” and non-contiguity when discussing “subsequences.”) We now define a
mapping function that maps a string inΣ∗ onto the space of all of its gapped subsequences of
lengthn. The more “spread” a subsequence is (i.e., with more numerous and/or wider gaps), the
less representative it is of the string as a whole. This intuition is formalized by using a penalty
factorλ ∈ (0, 1] that makes matches with longer gaps exponentially less important. The base of the
exponentiation isλ and the exponent used is the total length of the gapped subsequence.

For the finite setΣ, n ∈ N
∗, andλ ∈ (0, 1], we define then-length gap-weighted feature

mapping with penaltyλ as the following functional:

Φ : Σ∗ → R
Σn

(4.45)

Φu(s) =
∑

i:u=s[i]

λi|u|−i1+1 (4.46)

It is implied thatΦu(s) = 0 if there is no vectori such thatu = s[i], i.e., stringss andu have no
element in common. The corresponding kernel is defined as a regular dotproduct in mapped space:

κ(s, t) ,
∑

u∈Σn

Φu(s)Φu(t) (4.47)

It would appear that the rich, informative similarity notion given by gapped matches is also its
Achilles’ heel. Computing all terms directly and then summing them is impractical, as they are
combinatorially numerous. However, Lodhi et al. [149] defined a gapped string similarity kernel
that requiresO(n · |s| · |t|) time and space to compute 1-gapped, 2-gapped,. . . ,n-gapped sim-
ilarities between two stringss andt by using dynamic programming techniques. The cost is also
incremental—eachO(|s| · |t|) iteration computes similarity for lengthm and saves state for comput-
ing similarity for lengthm+1. This is helpful becausem-gapped similarity is a decreasing function
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of m. An implementation might decide to stop computation early if the similarity has fallen below
a threshold.

Finally, Rousu and Shawe-Taylor proposed a sparse dynamic programming approach that re-
duces complexity toO(n · card(M) · log |t|), whereM = { 〈〈i, j〉〉 ∈ N

2 | si = tj} is the set of
index pairs of matching string elements.

The All-Lengths Gap-Weighted String Kernel A number of alternative kernels related to the
above were proposed by Yin et al. [230] along with dynamic programming algorithms. Of particular
interest is the all-lengths gapped kernel with the mapping function:

Φ : Σ∗ → R
Σ∗

(4.48)

Φu(s) =
∑

i:u=s[i]

λi|u|−i1+1 (4.49)

Note that in this case the codomain ofΦ has changed fromΣn to Σ∗, which means that the
mapped space is now the space of all strings. In spite of this space being considerably larger, the
dynamic programming algorithm only needsO(|s| · |t|) time andO(min(|s|, |t|)) space. This,
together with having less parameters, makes the all-lengths kernel potentially more attractive than
then-length kernel.

4.4 Structured Graph-Based Semi-Supervised Learning for MachineTranslation

A field that has recently benefitted from steady progress in machine learning and equally steady
growth of corpora sizes is Statistical Machine Translation (SMT). Althoughcontemporary SMT
systems have not achieved human-level translation capabilities on generaltext, they have made
important inroads into tackling this difficult problem.

In the following we describe a practical application of our formulation of graph-based learning
with structured inputs and outputs: an algorithm to improve consistency in phrase-based SMT.
As we have discussed theoretically, we define a joint similarity graph over training and test data
and use an iterative label propagation procedure to regress a real-valued scoring function over the
graph. The resulting scores for unlabeled samples (translation hypotheses) are then combined with
standard model scores in a log-linear translation model for the purpose ofreranking. We evaluate
our approach on two machine translation tasks and demonstrate absolute improvements of 2.6 BLEU

points and 2.8% PER (without adaptation), and 1.3 BLEU points and 1.2% PER (with in-domain
adaptation data) over state-of-the-art baselines on evaluation data.

Machine translation is a hard problem with highly structured inputs, outputs, and relationships
between the two. Today’s SMT systems are complex and comprise many subsystems that use var-
ious learning strategies and fulfill certain specialized roles. Applying a newlearning technique to
an SMT task is usually—and most effectively—carried by integrating the newlearning technique
within a multi-module SMT system and measuring the overall impact of that technique. To under-
stand the motivation behind applying structured graph-based learning to SMT, a description of the
standard architecture of a state-of-the-art SMT system is in order.



61

4.4.1 Architecture of Contemporary Phrase-Based SMT Systems

Contemporary SMT systems follow a fairly standard architecture. The essential flow consists of
preprocessing, system training, decoding, and postprocessing. In the training stage, the model is
trained by using parallel sentences in the source and target languages.The system-wide model
consists of various models (such as a language model and a translation model), which all feed an
overall log-linear probability model. Once the model is trained, a process called decodingis used
to obtain estimated translation for test sentences. The decoder is a search engine (usually having no
trained parameters) that searches for the translation that maximizes the probability of the translation
given the test input. Decoding may entail the generation and rescoring ofn-best lists, which is the
framework we will focus on.

The test phase usually operates at sentence level: one input sentence isread, processed, trans-
lated, and “forgotten” as the next input sentence is read. This is the usual setup (although certain
departures do exist [219]).

In the following we briefly describe the main activities performed by a phrase-based SMT sys-
tem.

Preprocessing This is the activity performing all processing necessary for adapting rawtext in-
puts to tokenized data (words). Subsequent stages operate at the tokenlevel. A system as simple as a
vocabulary-driven indexer that identifies words separated by whitespace is a rough archetype of this
stage. However, preprocessors may become much more involved depending on the input languages
and on the task at hand. Scripts that have no explicit word separation (such as Chinese) require a
learning machine procedure on its own for word segmentation [206, 231, 82]. Also, highly-inflected
languages (such as German, Arabic, or Greek) benefit from a morphology-informed preprocessor
lest the vocabulary size increases and relationships between various inflections of the same word are
lost. Preprocessing also usually detects simple symbolic categories such as numbers and dates [193].
Preprocessing is performed on both source and target sides for the training data (by different sub-
systems that take into account the specificities of the source and target languages, respectively) and
on the source side for test data.

Training Training the decoder is done with parallel texts in the source and target language. The
basic approach aims at computing parameters that maximizep(y|x), which, after applying the Bayes
rule, becomes:

arg max
y

p(y|x) = arg max
y

p(x|y)p(y) (4.50)

Of the two factors,p(y) is computed by using alanguage modelon the target language side, a
problem that has been investigated extensively [50, 209, 105, 45]. The translation modelp(x|y) is
the more difficult subsystem to train; a variety of training methods are being used, such as word-
alignment induced phrases [126, 175], syntactic phrases [126], andphrase-alignment [126, 153].
Additional models may be used in the rescoring process, and the weights of the log-linear model
associated with them are trained on the training set (parallel sentences in thesource and target
languages), usually by using Minimum Error Rate training [172]. Each subsystem participating in
rescoring may be trained in a different way.
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Decoding The decoding engine finds hypothesesyij = (χ(xi))j (candidate sentences in the target
languages) that are the best candidates for translating test sentencesxi. We slightly depart at this
point from the prevalent notations used in SMT literature for source and target sentences (s andt)
in order to integrate the SMT process within the notations we have used in the general section on
structured learning. In the same vein it is worth noting that the use of “hypothesis” here is consistent
with our definition of the term in § 4.1.

The decoder [125] essentially (a) segments each source (test) sentence into phrases; (b) translates
each source phrase into a phrase in the target language; and (c) reorders the obtained phrases to
obtain a translation. Each of these steps is subject to large variations. For agiven sentence, several
segmentations into phrases are possible. Also, for each phrase in the source language, several
translation phrases are possible. Finally, for a given target phrase set, numerous reorderings are
possible. In order to reduce the number of hypotheses, several othermodels estimate hypothesis
probabilities and prune out unlikely translations. The other models may include alanguage model
and a distortion model that accounts for word reorderings. These modelsare integrated within a log-
linear model (described below in § 4.4.3), which associates an overall score with each hypothesis.

The decoder could be used as is by simply taking the so-called 1-best result, i.e. the hypothesis
with the largest score. A better option is to have the decoder output theN -best list, which is a
collection of the hypotheses that have received theN largest scores. In many SMT applicationsN
is on the order of103. N -best lists have the advantage of providing a good approximation of the
hypothesis set, while also keeping its size within manageable limits.

Rescoring Also known as reranking, rescoring operates on theN -best lists output by the de-
coder. The hypothesis space has been reduced by the decoder, so here is the point at which more
computationally-intensive models can be applied. The distinction between decoding and ranking
stems therefore from practical necessity: mathematically, the models used in therescoring stage
could have been applied against the larger hypothesis space searchedby the decoder, but that would
have made the approach computationally infeasible.

The scores computed by the models in the rescoring stage are integrated withinanother instance
of a log-linear model (§ 4.4.3). The scores computed by the decoder’s various models are usually
integrated within this last log-linear model. The model is in principle the same as the one used
in the decoder, but is trained separately and possibly implemented following different engineering
tradeoffs (as it operates on a smaller input space but a larger number ofmodels).

The rescoring stage is where sophisticated models may be inserted in the overall system in a
scalable manner, and is the point at which we insert our graph-based engine. Integration is facile
because we defined structured learning to fit perfectly within a rescoringframework. The formalism
for a hypothesis defined in § 4.1 corresponds to the notion of “hypothesis” as an element of the
N -best list.

4.4.2 Phrase-Based Translation

The phrase-based approach to translation (as opposed to word-based) is the most important recent
development in SMT, and is ubiquitous in today’s systems. Phrase-based translation systems oper-
ate on phrases as the unit of translation. The translator divides source language text into phrases,
translates each phrase into a target language phrase, and then possiblyreorders the output phrases to
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obtain the translated sentence. Phrases vary in length and a few given adjacent words may or may
not fall within the same phrase(s). The context horizon for phrase segmentation is the sentence or
the chunk (a large constituent of a sentence). Phrase lengths may differacross source and target,
and include lengths 0 and 1.

There are several ways of dividing sentences in phrases and pairingphrases in the source and tar-
get languages. Och et al. [176] learn phrase alignments from a parallelcorpus that has already been
word-aligned. The popular Giza++ Machine Translation system [174] generates word alignments
that can be subsequently used for learning phrases. Koehn et al. [126] add a number of heuristics
to the process. Yamada and Knight [228] and Imamura [106] proposed choosing linguistically-
motivated phrases, i.e. the system should only consider phrases that areconstituents. Such a re-
striction has low coverage and eliminates many useful phrases, so it obtainsinferior results when
compared to statistical-based phrase learners. However, using syntactically-motivated phrases in
conjunction with statistically acquired phrases has good performance and also reduces decoding
time [100]. Finally, Marcu and Wong [153] proposed a model that learns phrases jointly, direct
from an (unaligned) parallel corpus.

The system we use in our experiments is the University of Washington Machine Translation
System [120], which uses Och’s algorithm [176] for learning phrasesfrom a word-aligned corpus.
The word alignments are obtained with Giza++.

4.4.3 Log-Linear Models

During decoding and rescoring, the prevalent means of aggregating several models into one meta-
model is log-linear modeling [20, 173]. Log-linear models (a.k.a. exponential models) are based on
a powerful intuitive justification and an equally powerful mathematical justification. Intuitively, a
good model that needs to respect certain constraints (usually presentedin the form of experimental
evidence) must not “overcommit,” i.e. it should assume no other constraints except those presented;
aside from respecting the given constraints, it should assume that the distribution of all data is as
uniform as possible. This translates directly to intently choosing the model ofmaximum entropy
from the universe of all constraint-abiding models. Mathematically, maximizing the conditional
log-likelihood of the training data is equivalent to (i.e. is the convex dual of)minimizing the entropy
subject to the given constraints [20].

A log-linear model receives as input severalfeature functionsfi:

fi : X × Y → R ∀i ∈ {1, . . . , |f |} (4.51)

that map possible input/output pairings to real numbers (or categorical outputs). Some features
may be defined only onX or onY. A notable category of feature functions are binary features,
modeled as numbers in{0, 1} (which the paper introducing log-linear models [20] has used exclu-
sively). Although featuresfi and the scoring functions have similar definitions, there is one notable
difference: whereas the value of the scores(x, y) must increase with the feasibility/desirability of
the pair 〈〈x, y〉〉 , there is no such requirement for a feature functionfi. The only requirement is
thatfi(x, y) correlates, or inversely correlates, with the feasibility of〈〈x, y〉〉 . Using these features,
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the log-linear model computes the likelihood of a given pair as:

pλ(y|x) =

exp





|f |
∑

i=1

λifi(x, y)





∑

y′∈Y

exp





|f |
∑

i=1

λifi(x, y
′)





(4.52)

whereλ ∈ R
|f | is the vector containing the log-linear model’s parameters, called feature weights

or model scaling factors. The denominator ensures normalization for a properly-defined probability
and need not be computed if only thearg max pλ(x, y) is of interest.

4.4.3.1 Training Log-Linear Models for SMT

For Statistical Machine Translation, the state-of-the-art method is Minimum Error Rate Training
(MERT) proposed by Och in 2003 [172] and subsequently improved by Och and others [71, 150,
41]. MERT is a rather general training method that trains the parameters of the log-linear model to
minimize a smoothed error count. The method is parameterizable by the training criterion; in SMT,
training maximizes directly BLEU [180] or PER [173] against a development set. For example,
training for maximizing BLEU solves the problem

λ∗ = arg max
λ

BLEU(e∗λ; references) (4.53)

where∗
λ is the candidate translation obtained by using model parametersλ. The function is not

smooth and has many local minima, which makes thearg max search difficult. MERT selects the
best candidate translation out of ann-best list (candidate translation) by using coordinate ascent;
within an iteration the parameter that improves the score gets optimized while the others are fixed.

4.4.4 Constraining Translations for Consistency

The translation of a given sentence depends on the maximum global sentence score as computed by
the final log-linear model in the rescoring stage. The global score may be dominated by different
models at different times, and there is no inherent smoothing that fosters similar translations for
similar input sentences. Therefore, it sometimes happens that similar test sentences receive rather
different translations. This lack of smoothness reduces the cohesiveness of the translation and in
fact may favor mistaken translations.

Consider the example in Fig. 4.1, taken from the IWSLT 2007 Arabic-to-English translation
task [83]. The Arabic word “ymknk” means “you can” and “lA” negates itsuch that the phrase “lA
ymknk” means “you may not”/“you cannot.” In the first case, the Arabic sentence is segmented
properly such that “lA ymknk” is put in correspondence to “you can’t” which ultimately leads to
an intelligible translation. However, in the second case, the segmentation choices were different as
“lA” and “ymknk” were put in distinct phrases. This in turn led to a different translation for each
word in the phrase and ultimately to the loss of the negation, which was semanticallyessential. The
complex interactions between various components of the final log-linear model led to the surprising
outcome of making apparently non-systematic mistakes when presented with similarinputs.
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|Asf |lA ymknk |*lk |hnAk |klfp |HwAly |vmAnyn |dwlAr |lAlsAEp |AlwAHdp

|i’m sorry |you can’t |there in |the cost |about |eighty |dollars |for a |one o’clock

(Reference: sorry you can’t there is a cost the charge is eighty dollars per hour)

|E*rA lA |ymknk |t$gyl |AltlfAz |HtY |tqlE |AlTA }rp

|excuse me i |you |turn |tv |until |the plane |departs

(Reference: sorry you cannot turn the tv on until the plane has taken off)

Figure 4.1: Two baseline translations of Arabic sentences containing the same negation. The phrase
“lA ymknk” (“you cannot”), where “lA” is the negation, is mistakenly segmented in the second
example such that the negation is lost in the translated sentence.

A few possible approaches to addressing this problem are summarized below.

• One obvious solution is to improve the word alignments and phrase estimation. These in turn
would reduce the number of incorrect segmentations.

• A confidence feature may be added for phrases to encourage frequent translations over less
frequent ones.

• Similar input phrases might be forced to be always segmented in the same way. This approach
falls prey to the well-known problem that natural language has many ambiguities that make
proper segmentation possible only when context is taken into account (e.g.“You like Mary”
vs. “You are like Mary”).

Our proposed approach is to inject one additional feature function into thelog-linear model that
explicitly encouragessimilar outputs for similar inputs. We can naturally add a semi-supervised
effect to this goal if we consider similar inputs not as measured between training sentences and test
sentences, but also across different test sentences. Such a feature function may improve the transla-
tion quality: If the system issues good translations more often than bad ones,fostering consistency
in translation would favor (by way of similarity with the majority) correct translations and would
avoid incorrect ones.

The converse risk is that an overall poor translation will be hurt even more by dropping minor-
ity correct translations in favor of incorrect translations that are similar to other translations, also
incorrect. To some extent we are able to control this effect by adjusting therelative weights of
labeled-labeled and unlabeled-labeled connections. We assess improvements in the error rate by
comparing the improved system with a baseline system using the standard methodBLEU (discussed
in detail in § 4.4.7). As far as the more subjective topic of fluency and coherence is concerned, we
provide a few illustrative examples.
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It is worth noting that obtaining similar translations for similar inputs is to some extentalready
ensured by the training process, but only in an implicit form. Essentially, the assumption that similar
inputs lead to similar outputs is the basis of all statistical learning. However, the discrete nature of
the signal and the interaction between models makes for sudden changes in input-to-output corre-
spondence. Also, as mentioned in § 4.4.1, most of today’s SMT systems “forget” a test sentence
as soon as it was translated, so by design they are not conceived to enforce consistent translations
across the entire test input. An explicit constraining feature that uses similarities between different
test sentences could improve the self-consistency of a translation and alsohelp with adaptation in
case the domains and styles of the training and test data are slightly different.

The plan is therefore to add a new feature function to the log-linear model ofa state-of-the-art
phrase-based SMT. The new feature function is a regressed score as defined in § 4.1. This is possible
becauses readily fits the definition of a feature function (Eq. 4.51) and also becauseit is correlated
with a suitably-defined similarity measure between sentences. That score is regressed using graph-
based semi-supervised learning on a graph that uses sentence pairs (source plus target) as vertices
and links them using similarity edges. Using the initial SMT system as a baseline, we evaluate the
performance obtained after adding our feature function into the rescoring module. The following
sections shape out the details of problem definition, choice of similarity function, data and system,
experiments, and commented results.

4.4.5 Formulation of Structured Graph-Based Learning for Machine Translation

We first define a few concepts aimed at formalizing the notion of a sentence.

Definition 4.4.1. Let Σ be a finite set. Astring over alphabetΣ is a finite catenation of elements
from Σ. The concatenation of two stringss and t is denoted asst. The lengthof a strings =
s1s2 . . . sn is denoted as|s| , n (for empty strings|s| = 0). The set of all strings overΣ is denoted
asΣ∗.

A sentence in a language is therefore a string consisting of a concatenationof elements in the
vocabulary of that language. In general, instead of words, the alphabet Σ may consist of larger
units (e.g. phrases), smaller units (e.g. syllables or letters), or even derived units added through
preprocessing such as word stems, roots, or other features. For nowwe use the word as a basic unit
in Σ. For the purpose of translation, we define the source vocabularyΣS and a source sentencex
as a string overΣS , soX = Σ∗

S . In symmetry with source vocabulary and sentences we define the
target vocabularyΣT and the set of target sentences asY ∈ Σ∗

T .
We construct our graph following Definition 5.5.1. Each test vertex represents a sentencepair

(consisting of source and target strings), and edge weights represent the combined (source and tar-
get) similarity scores discussed in the next section. The hypothesis generator functionχ is defined
simply as theN -best list obtained from the first-pass decoding. We add a few parameterizations
to the graph construction process aimed at speeding up the training process. Given a training set
consisting of sentencesx1, ..., xt that have the reference translationsy1, . . . , yt, a test set with sen-
tencesxt+1, ..., xt+u, a scoring functions, and a hypothesis generator functionχ, construction of
the similarity graph proceeds as follows:

1. For each sentencexi, i ∈ {t+ 1, . . . , t+ u} in the test inputs, compute a setΓtraini
of similar

training sentences and an ordered set of similar test sentencesΓtesti by applying a similarity
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functionσ (discussed in the next section):

Γtraini
= 〈〈x ∈ 〈〈x1, . . . , xt〉〉 | x 6= xi ∧ σ( 〈〈x, ǫ〉〉 , 〈〈xi, ǫ〉〉 ) ≥ θ〉〉 (4.54)

Γtesti = 〈〈x ∈ 〈〈xt+1, . . . , xt+u〉〉 | x 6= xi ∧ σ( 〈〈x, ǫ〉〉 , 〈〈xi, ǫ〉〉 ) ≥ θ〉〉 (4.55)

whereǫ is the empty sentence. Using the empty sentence in the target position means that
similarity is to be applied to source sides only. Note that we never compute similarities
between two training samples becauseΓtraini

andΓtesti are only defined fort < i < t + u.
Only those sentences whose similarity score exceeds some thresholdθ are retained. The
sentencexi itself is not made part ofΓtesti . Different values ofθ can be used for training
vs. test sentences; however, here we use the sameθ for both sets.

2. For each test sentence-hypothesis pair〈〈xi, (χ(xi))j〉〉 that has a non-emptyΓtraini
, compute

the similarity with each pair〈〈xk, yk〉〉 ∀xk ∈ Γtraini
. Similarity is defined by the similarity

score

wijk = σ( 〈〈xi, (χ(xi))j〉〉 , 〈〈xk, yk〉〉 ) (4.56)

If wijk > 0, then connect the vertices〈〈xi, (χ(xi))j〉〉 andv+ with an edge of weightwijk, and
connect the vertices〈〈xi, (χ(xi))j〉〉 andv− with an edge of weight1− wijk.

3. Similarly, for each two pairs of test sentences and their hypotheses〈〈xi, (χ(xi))j〉〉 and
〈〈xk, (χ(xk))l〉〉 , compute their similarity and use the similarity score as the edge weight
between vertices representing〈〈xi, (χ(xi))j〉〉 and 〈〈xk, (χ(xk))l〉〉 .

wijkl = σ( 〈〈xi, (χ(xi))j〉〉 , 〈〈xk, (χ(xk))l〉〉 ) (4.57)

Figure 4.2 shows a sample similarity graph. The setup is similar to a maximum flow problem
with capacities proportional to edge weights, sourcev+, and sinkv−. Indeed, after solving the max-
imum flow problem, the pressure at each edge is proportional to the regressed function [1, § 10.6].
Alternatively, there is an analogy with an electric circuit havingv+ connected to a 1V potential,v−
connected to the ground, and edge conductances given by their weights. In that network, the vertex
potentials are equal to the regressed scoring function [1].

4.4.6 Decomposing the Similarity Function into Partial Functions

As defined in § 4.2, the similarity functionσ accepts two pairs of inputs and outputs. However, the
graph construction method defined in § 4.4.5 passes in certain cases the emptysentenceǫ to σ in the
target sentence position. We need to define the semantics ofσ appropriately such that it can handle
incomplete arguments.

One simple approach is to requireσ to be a mean of two partial functions, one operating on the
input side and the other on the output side:

σ( 〈〈x, y〉〉 , 〈〈x′, y′〉〉 ) = m(fX (x, x′), fY(y, y′)) (4.58)
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v+ v−

Figure 4.2: A similarity graph containing a source vertexv+ with label 1, a sink vertexv− with
label 0, and several intermediate vertices that may or may not be connecteddirectly to a source. Edge
weights are not shown. Label propagation assigns real-valued labels at inner vertex that regress the
harmonic function for the graph. A given vertex’s label depends on its connections with the source
and sink, and also of its connections with other vertices. In order to be meaningfully assigned a
score, each test vertex must have a path (direct or indirect) to at least one of the train verticesv+

andv−.

where:

fX : X → [0, 1] (4.59)

fY : Y → [0, 1] (4.60)

m : [0, 1]× [0, 1]→ [0, 1] (4.61)

FunctionsfX andfY compute partial similarities on the input and the output side respectively,
andm is a mean function (e.g. arithmetic, geometric, or harmonic) that combines the two separate
scores. This form is not appropriate for all structured learning problems because it is unable to
capture dependencies between inputs and outputs. However, the SMT system we integrate with
has several other models that are concerned with proper input-output mapping. Thus, we count
on the rest of the system to capture such dependencies and we choose this measure on grounds
of simplicity, noting that other similarity kernels that could capture alignment information might
perform better here. This is an interesting venue for further research.

Due to the fact that the input and output domains are topologically similar (apart from being
defined over different vocabularies), we choose to defineσ as a mean of two identical functions
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defined over strings of words from different vocabularies:

σ( 〈〈x, y〉〉 , 〈〈x′, y′〉〉 ) = m(σΣS
(x, x′), σΣT

(y, y′)) (4.62)

In this application we choosem to be the geometric mean. The geometric mean is better suited
for our notion of similarity than arithmetic mean because in order for the geometricmean to be
relatively large,bothsource and target side sentences must be similar. In contrast, arithmetic mean
yields relatively large values for highly discrepant inputs. We confirmed that geometric mean yields
better bottom-line results than arithmetic mean on our experimental test bed.

Geometric mean is still possibly suboptimal because it assigns equal importanceto the source
and target sides. The two sides have an inherent asymmetry because on the source side the sentence
are always correct, whereas the target side comprises the test hypotheses, which are potentially
incorrect, and the reference translation, which, being performed by human translators, is subject
to considerable variability. The source side comparison is therefore more reliable; on the other
hand, the target side comparison is also informative because it can distinguish good translations
from bad ones. Additional sources of information regarding the translation (such as alignment) may
be integrated in the definition of the mean function. This study does not pursue these potential
directions.

The following sections focus on defining a similarity measureσΣ over sentences constructed
over some general vocabularyΣ; it is assumed that they will be integrated into the composite sim-
ilarity function σ as per Eq. 4.62. Choosing the similarity measure essentially determines the per-
formance of the scoring functions. The similarity measure is also the means by which domain
knowledge can be incorporated into the graph construction process. Similarity may be defined at
the level of surface word strings, but may also include more linguistic information, such as morpho-
logical features, part-of-speech tags, or syntactic structures.

This study compares two similarity measures, the BLEU score [180] and a score based on string
kernels. Whereas the former is a reasonable baseline choice because ituses the same optimization
criterion for training and for evaluation, the latter yields better results in practice.

4.4.7 Using theBLEU Score as Sentence Similarity Measure

BLEU is one of the most popular automated methods for evaluating machine translation quality. It
is based on the simple principle that the closer an candidate translation is to a correct translation, the
better it is deemed to be by a human arbiter. In turn, extensive experiments have shown that good
automated translations tend to share manyn-grams with human-written reference translations for a
range of small values ofn. To compute the amount of sharedn-grams for a given value ofn, BLEU

uses a measure calledmodified precision. The occurrences of each distinctn-gram in the candidate
sentence are counted, but only up to the maximum number of occurrences of that n-gram among
all reference sentences. (This prevents an artificially good precision for candidates consisting of
repeated frequently-encounteredn-grams.) Then the precision is computed normally by dividing
the obtained count by the total number of distinctn-grams in the candidate sentence. The geometric
mean of all modified precisions is computed forn ∈ {1, 2, 3, 4}. Finally, a brevity penalty BP
multiplies the result because modified precision favors short sentences (e.g., a one-word sentence
that matches one of the words in the reference sentence has modified precision equal to 1).
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In detail, the BLEU score is given by the equation:

BLEU = BP · exp

(

1

4

4∑

n=1

log pn

)

(4.63)

wherepn are probabilities computed forn-grams of lengthn as follows:1

pn =

t+u∑

i=t

∑

ngram∈yi

min
(
Countyi

(ngram), MaxRefCounti (ngram)
)

t+u∑

i=t

∑

ngram∈yi

Countyi
(ngram)

(4.64)

The outer sum iterates over all sentences in the test set (pn is computed globally). The inner
sum iteratesn-grams in one candidate translation. The quantity Counti(ngram) is the count of a
given n-gram within the candidate translationyi, and the quantity MaxRefCounti(ngram) is the
maximum number of occurrences of thatn-gram in any of the reference translations of sentencexi.
(In general, a translation task may avail itself of several reference translations.) Again, themin is
taken to avoid repeated correctn-grams from imparting an artificially good quality to a translation.

The brevity penalty BP is computed as follows:

BP =

{

1 if c ≥ r

e(1− r
c
) if c < r

(4.65)

wherec ,

t+u∑

i=t

|yi| is the total length of the candidate translation, andr is the length of the reference

translation. When there are multiple reference translations, several variations exist as to how the
reference translation length is defined. The original definition takes the reference length closest toc;
the NIST definition [170] takes the shortest reference length; and otherauthors take the average
length of all references. The data we used for experiments (§ 4.5) has only one reference available.

In using BLEU in our application, we consider each sentence one document, so the outer sum is
inoperative. Also, there is only one “reference” (the other sentence inthe similarity computation)
so MaxRefCount is the same as Count for that sentence. So for two arbitrary sentencess ands′

defined over the same vocabulary,pn becomes:

pn(s, s′) =

∑

ngram∈s

min(Counts(ngram), Counts′(ngram))

∑

ngram∈s

Counts(ngram)
(4.66)

BLEU is not symmetric; in generalpn(s, s′) 6= pn(s′, s). For computing similarities between
train and test translations, we use the train translation as the reference (in the s′ position). For

1We slightly depart from the original notations [180] so as to integrate the equations within our notational system.
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computing similarity between two test hypotheses, we compute BLEU in both directions and take
the average.

BLEU is arguably a relevant sentence similarity measure to consider forσ at least as a baseline.
This is because BLEU has been extensively used to measure the quality of translations and has been
shown to correlate well with human judgment [180, 54]. In addition, the performance of the end-to-
end SMT system is measured using BLEU, so it is sensible to internally use the same performance
measure as the one used in evaluation.

However, BLEU has known disadvantages when applied to sentence-level similarity, as wellas
in general. Even as early as its initial introduction, BLEU has been meant and shown to be a good
measure only at document level. The counts are accumulated over all sentences in the document and
then BLEU is computed; computing BLEU for each sentence and then averaging the results would
yield a different score. This introduces noise in the similarity graph and is ultimately optimizing a
cost function that is not directly related to the final evaluation. Also, previous studies [38, 4, 47] have
pointed out further drawbacks of BLEU. BLEU is not decomposable [47], meaning that a variation
in the score for one individual sentence’s translation is not always reflected into a corresponding
variation of the overall translation score. Also, BLEU allows too much variation across translations
of a given sentence, and a strict increase in BLEU is not always correlated with an increase in
perceived quality of translation.

4.4.8 String Kernels as Sentence Similarity Measure

Guidance for a better sentence similarity measure can be found by analyzingsome shortcomings
of the BLEU scoring method. One issue is rigidity:n-grams fail to catchapproximate matches
that deliberately ignore extra words intercalated among then-gram constituents. For example the
phrases “lorem ipsum dolor sit amet” and “lorem dolor feugiat elit amet” have in common the sub-
sequence “lorem dolor amet,” albeit with gaps in both strings. To catch suchapproximate matches,
we need a notion of similarity and substring matching that is more permissive than approaches based
onn-grams. For example, from a BLEU scoring perspective, the phrases “red flower,” “red beautiful
flower,” and “red pretty flower” only have two unigrams and no bigram in common. However, it
is clear that the two sentences also have some longer-distance similarity because they both embed
the string “red flower,” albeit with a gap in the last two cases. Scoring based onn-grams fails to
measure such similarity, and gapped matches are a smoother similarity measure between sentences
that adapts to the variability of natural language. Granted, sometimes a missing or inserted word
may dramatically alter the meaning of the sentence, but there also are combinatorially many gapped
substrings in a given string, so as long as gapped string similarity is statistically “right” much more
often than “wrong,” it will properly tolerate and overcome the occasionalnoisy terms. A similarity
measure based on gappedn-gram is fine-grained as it is composed of many terms. In contrast, for
n ∈ {1, 2, 3, 4}, a sentences may have cumulatively only up to4 · |s| distinct n-grams,2 which
makes each mistaken match relatively more expensive. The downside is that the high dimension-
ality of gapped similarity makes the function value vary wildly from very small (for most strings)
to extremely large (for long strings that are almost equal). Normalization, discussed in § 4.3.1.1, is
an effective measure against such a large dynamics. It is possible that more aggressive smoothing
schemes could add to the effectiveness of the measure.

2Assuming padding with null symbols to the right.
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A good starting point in defining a better similarity measure is to employedit distancemea-
sures [61, 141], which allow, with penalty, sentences to match in spite of minutedifferences, gaps,
and extraneous words. Efficient data structures and algorithms are known for computing edit dis-
tances. Edit distances have a strongly local bias, in that they require largely aligned strings and
only allow for local differences between them. In contrast, translations ofa given sentence may be
correct in spite of considerable local differences, caused e.g. by ordering. To overcome the rigidity
of the edit distance measure when used in a translation context, Watanabe and Sumita [226] intro-
duced a modified edit distance measure that integrates thetf-idf criteria [195], measure that was
subsequently used by Paul et al. [181] in defining a rescoring system for SMT. Other uses of edit
distance as a similarity measure have been explored in the NLP literature [122,119, 84, 183] and
have involved a human translator in a semi-automated evaluation loop. For example [183], a human
would edit (attempting a minimum of insertions, deletions, and replacements) an automated trans-
lation until it had the same meaning as the reference translation (but, crucially,not necessarily the
same sentence structure); after that, the quality of the automated translation was assessed by using
the edit distance between the automated translation and the human-modified translation.

String kernels (§ 4.3.1.3) are a general and efficiently computable similarity measure that is
smoother than edit distance. To improve the match of an-gapped string kernel with the BLEU score
used for evaluation, we define a weighted kernel obtained by averagingover 4 different kernels. The
BLEU score focuses not on one specificn-gram size, but instead computes a weighted average of
similarities for alln-gram sizes up to a limit. The intent is to capture similarity between sentences
with increased exigency. Experiments [180] have confirmed that similarity for unigrams reflects
comprehensibility of the translation, whereasn-gram similarity for higher values ofn reflects flu-
ency (BLEU uses values ofn up to 4).

A similarity function based on gap-weighted kernels of a fixed lengthn would generalize sim-
ilarity as measured with BLEU by allowing gaps in then-grams, butonly for one specificn-gram
length. In order to truly generalize BLEU scoring, we define similarity not as a gap-weighted simi-
larity of lengthn, but instead as a weighted sum of gap-weighted similarities for sizes up ton. This
way we finally obtain the kernel-based similarity definition, which we will use in our experiments.

Definition 4.4.2 (Kernel-Based Similarity for Machine Translation). Given a finite setΣ, n ∈ N
∗,

λ ∈ (0, 1], andW = 〈〈w1, . . . , wn〉〉 ∈ R
n
+ with

n∑

i=1

wi = 1, we define thenormalized gapped

similarity of sequences overΣ up to lengthn with penaltyλ and weightsW as:

σΣ,n,λ,W :Σ∗ × Σ∗ → [0, 1] (4.67)

σΣ,n,λ,W (s, t) =

n∑

i=1

wi · κ̂Σ,i,λ(s, t) (4.68)

whereκ̂Σ,i,λ is the normalizedi-length gap-weighted string kernel over alphabetΣ with penaltyλ.

In our experiments we usen = 4 because the evaluation method (BLEU) uses up to 4-gram
similarity. The resulting similarity function is bounded by the interval[0, 1], is 1 only for identical
strings and 0 only for strings that do not share any word (assuming the weights vectorW has no
zero values). The functionσΣ,n,λ,W will be used on the source side and on the target side as partial
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similarities in the overall similarity function as described by Eq. 4.62. The averaging function across
the source and target side is geometric mean.

Here are a few examples showing values ofσΣ,n,λ,W for n = 4, λ = 0.5, and W =
〈〈0.25, 0.25, 0.25, 0.25〉〉 :
s1 = life is like a box of chocolate
s2 = i would like a box of sweet chocolate
s3 = your chocolate is in a box
s4 = i have chocolate
σΣ,n,λ,W (s1, s2) = 0.444696
σΣ,n,λ,W (s1, s3) = 0.213679
σΣ,n,λ,W (s2, s4) = 0.134101
σΣ,n,λ,W (s3, s4) = 0.0833421

As expected, similarity is strong when there are relatively many matches albeit with gaps (s1,
s2), but is more pronounced when the order of word is different (s1, s3), when gaps are longer (s2,
s4), or when strings only share few unigrams (s3, s4).

4.5 Experimental Setup

We evaluate our use of graph-based learning, with both BLEU and kernel similarity, against the
IWSLT 2007 Italian-to-English and Arabic-to-English travel tasks [83, 197]. The Italian-to-English
translation is a challenge task, where the training set consists of read sentences, but the development
and test data consist of spontaneous simulated dialogs between would-be travel agents and hypo-
thetical tourists seeking information, extracted from the SITAL corpus [40]. This is a particularly
interesting task because it requires some adaptation capabilities of the model. The Arabic-to-English
translation challenge, known as the “classic vintage” BTEC task consists oftravel expressions sim-
ilar to those found in tourist phrasebooks. For our experiments we chosethe text input (correct
transcription) condition only. The data set sizes are shown in Table 4.1.

Set # sent pairs # words # refs

IE train 26.5K 160K 1
IE dev1 500 4308 1
IE dev2 496 4204 1
IE eval 724 6481 4

AE train 23K 160K 1
AE dev4 489 5392 7
AE dev5 500 5981 7
AE eval 489 2893 6

Table 4.1: Data set sizes and reference translations count (IE = Italian-to-English, AE = Arabic-to-
English).

We divided the Italian-to-English development set into two subsets: dev1 containing 500 sen-
tences, and dev2 containing 496 sentences. We use dev1 to train the system parameters of the
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baseline system and as a training set for GBL. Then dev2 is used to tune the GBL parameters.
In keeping with most of today’s SMT systems, we used additional out-of-domain training corpora
in the form of the Italian-English Europarl corpus [124] and 5.5M wordsof newswire data (LDC
Arabic Newswire, Multiple-Translation Corpus and ISI automatically extracted parallel data) for
the respective languages. The additional training data was used both by the baseline system and
the GBL system.

The baseline system is created out of the components usually employed by theSMT research
community and yields results on a par with today’s state-of-the-art. Our baseline is a standard
phrase-based SMT system based on a log-linear model (§ 4.4.3) with the following feature functions:

• two phrase-based translation scores;

• two lexical translation scores;

• word count and phrase count penalty;

• distortion score;

• language model score.

We use the Moses confusion network-based decoder [128] with a reordering limit of 4 for both
languages. The decoder generatesn-best lists of up to 2000 non-unique hypotheses per sentence in
a first pass. In the second pass a trigram model based on parts of speech is used. The part of speech
sequences are in turn generated by a Maxent tagger [186]. The language models are trained on the
English side using SRILM [209] and modified Kneser-Ney discounting forthe first-pass models,
and Witten-Bell discounting for the POS models. Refer to [120] for more details about the machine
translation system.

4.6 Experiments and Results

We first investigated the effect of only including edges between labeled and unlabeled samples in the
graph on the Italian-to-English system. This eliminates any semi-supervised effect as similarities
among test samples are not taken into consideration. The graph containing only unlabeled-to-labeled
edges is equivalent to using a weighted nearest neighbor ranker that, for each hypothesis, computes
average similarity with its neighborhood of labeled points, and uses the resulting average for rerank-
ing. The GBL-learned score is made part of the log-linear model, and weights are retrained for all
models.

Starting with the Italian-to-English task and the BLEU-based similarity metric, we ran parameter
optimization experiments that varied the similarity threshold and compared arithmetic vs. geometric
mean of source and target similarity scores. Geometric mean was consistently better experimentally.
As mentioned in § 4.4.6, our conjecture is that geometric mean is better suited for decomposing the
similarity function because it better penalizes similarity between sentences that are highly discrepant
across languages (very similar in one language and very dissimilar in the other). In this experimental
stage we also choseθ = 0.7.
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Weighting dev2 eval

n/a (baseline) 22.3/53.3 29.6/45.5
(a) 23.4/51.5 30.7/44.1
(b) 23.5/51.6 30.6/44.3
(c) 23.2/51.8 30.0/44.6

Table 4.2: GBL results (%BLEU/PER) on the IE task for different weightings of labeled-labeled
vs. labeled-unlabeled graph edges (BLEU-based similarity measure).

4.6.1 Experiments on Italian-to-English Translation UsingBLEU as Similarity Measure

After the initial stage, we performed our main experiments with three differentsetups affecting the
strength of the semi-supervised effect, as shown below.

(a) no weighting:similarities are kept as they are;

(b) strongly favor supervision:labeled-to-unlabeled edges were weighted 4 times stronger than
unlabeled-unlabeled ones;

(c) mildly favor supervision:labeled-to-unlabeled edges were weighted 2 times stronger than
unlabeled-unlabeled ones.

The weighting schemes lead to similar results. The best result obtained (b) shows a gain of
1.2 BLEU points on the development set and 1.0 BLEU points on the evaluation set, reflecting PER
gains of 2% and 1.2%, respectively.

4.6.2 Experiments on Italian-to-English Translation Using the String Kernel

We next tested the string kernel based similarity measure. The parameter values were a gap penalty
λ = 0.5, a maximum substring length ofk = 4, and weights of0.0, 0.1, 0.2, 0.7, for unigrams,
bigrams, trigrams, and 4-grams respectively. These values were chosen heuristically and were not
tuned extensively. Results (Table 4.3) show improvements in both development and test set. The
absolute gains on the evaluation set are 2.6 BLEU points and 2.8% PER.

System dev2 eval

Baseline 22.3/53.3 29.6/45.5
GBL 24.3/51.0 32.2/42.7

Table 4.3: GBL results (%BLEU/PER) on the Italian-to-English IWSLT 2007 task with similarity
measure based on a string kernel.
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The BTEC task has test data with different characteristics than the training data, which means
that an adaptive machine learning system would be at an advantage. Graph-based learning is inher-
ently adaptive, so it is interesting to gauge to what extent adaptation contributed the better perfor-
mance of the GBL system.

GBL being an inherently adaptive technique, a natural question to ask is whether the improve-
ments brought by GBL still hold when a small amount of in-domain data is available. To effect
adaptation in the baseline, we train the baseline system on the concatenation ofthe development
and training set. This avails the phrase table of the phrases that are stylistically different from the
train set and close to the test set. We first optimized the log-linear model combination weights on
the entire dev1+2 set (the concatenation of dev1 and dev2 in Table 4.1) before retraining the phrase
table using the combined train and dev1+2 data. The new baseline performance (shown in Table 4.4)
is, as expected, much better than before, due to the improved training data. We then added GBL
to this system by keeping the model combination weights trained for the previoussystem, using
theN -best lists generated by the new system, and using the combined train+dev1+2 set as a train set
for selecting similar sentences. We used the GBL parameters that yielded the best performance in
the experiments described above. GBL again yields an improvement of 1.3 BLEU points and 1.2%
absolute PER.

System BLEU (%) PER

Baseline 37.9 38.4
GBL 39.2 37.2

Table 4.4: Effect (shown on the evaluation set) of GBL on the Italian-to-English translation system
trained with train+development data.

4.6.3 Experiments on Arabic-to-English Translation

For the Arabic-to-English task we used the thresholdθ = 0.5 and an identical setup for the rest of
the system. Results using BLEU similarity are shown in Table 4.5. The best GBL system improved
results on the evaluation set yields by 1.2 BLEU points, but only by 0.2% absolute in PER. Overall,
results were highly sensitive to parameter settings and choice of the test set.For example, testing
against dev5, a surprisingly large improvement in of 2.7 BLEU points was obtained.

Overall, sentence similarities were observed to be lower for this task. One reason may be the
already known difficulties in tokenizing Arabic text [99, 76]. The Arabic-to-English baseline system
includes statistical tokenization of the source side, which is itself error-prone in that it can split the
same word in different ways depending on the context. Since our similarity measure has word-level
granularity, this dampens the similarity of sentences on the source side making some of them fall
below the threshold. The string kernel does not yield sensible improvementover the BLEU-based
similarity measure on this task. Two possible improvements would be to use sub-word granularity
on the source side (which would, however, impact adversely the speed of the system), and/or use an
extended string kernel that can take morphological similarity into account.
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Method dev4 dev5 eval

Baseline 30.2/43.5 21.9/48.4 37.8/41.8
GBL (BLEU similarity) 30.3/42.5 24.6/48.1 39.0/41.6
GBL (kernel similarity) 30.6/42.9 24.0/48.2 38.9/37.8

Table 4.5: GBL results (%BLEU/PER) on the Arabic-to-English IWSLT 2007 task with similarity
measure based BLEU, θ = 0.5.

4.6.4 Translation Example

Below we give an actual example of a translation improvement, showing the source sentence, the
1-best hypotheses of the baseline system and GBL system, respectively, the references, and the
translations of similar sentences in the graph neighborhood of the currentsentence.

Source Al+ mE*rp Aymknk{ltqAT Swrp lnA
Baseline i’m sorry could picture for us
GBL excuse me could you take a picture of the us
References excuse me can you take a picture of us

excuse me could you take a photo of us
pardon would you mind taking a photo of us
pardon me could you take our picture
pardon me would you take a picture of us
excuse me could you take a picture of us

Similar sentences could you get two tickets for us
please take a picture for me
could you please take a picture of us

Source Al+ mE*rp Ayn Tryq Al+ xrwj
Baseline excuse me where the way to go out
GBL excuse me where is the way to go out
References excuse me where’s the way out

pardon me how do i get out of here
excuse me where’s the exit
pardon me where is the exit
excuse me where’s the way out
excuse me where’s the way out

Similar sentences where is the music hall
where is the household appliances department
where is the fancy goods department
where’s the air france counter
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4.7 Related Work

There are several recent approaches of structured problems with GBL. Our work is the first attempt
at formalizing and applying GBL to SMT in particular.

Ueffing et al. [219] apply self-training—a different semi-supervised learning method—to SMT,
with a focus on adaptation, obtaining improvements on French-to-English andChinese-to-English
translation tasks. Altun et al. [7] apply transductive graph-based regularization (a method akin to
label propagation that also works on a similarity graph) to large-margin learning on structured data.
The graph regularizer leads to a more expressive cost function (whiche.g. is more robust in the
presence of noisy training samples), but requires solving a quadratic program,with which scalability
quickly becomes an issue. String kernel representations have been used in SMT in a supervised
framework [213]. Finally, our approach can be compared to a probabilistic implementation of trans-
lation memories [156, 221, 132]. Translation memories are intended to help human translators by
offering a database, a fuzzy query language, and an interactive console. The human translator can
consult the database for translations with a source sentence (or segment)similar to the sentence
(segment) to be translated. A semi-supervised aspect of translation memory systems is that the op-
erator may also update the database with a new translation that is deemed correct. Our system not
only is entirely automated, but is able to propagate similarity (akin to a fuzzy match ina translation
memory) from other unknown sentences to the sentence of interest. Marcuet al. proposed a combi-
nation of a translation memory with statistical translation [152]; however, that isa combination of
word-based and phrase-based translation predating the current phrase-based approach to SMT.
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Chapter 5

SCALABILITY

This chapter discusses how the proposed graph-based learning approaches can be applied to
large data sets, which are frequent in realistic NLP problems.

Scalability is a general term with several definitions; this chapter loosely uses the term “scala-
bility” to refer to the ability of an algorithm to operate on large data sets (e.g., contemporary HLT
corpora), as well as the ability of achieving results faster and/or operateon larger data sets when
more computational resources are added. Scalability is affected by several factors, the most impor-
tant being algorithmic complexity. Algorithms that requireO(nk) time and/or space (wheren is
the size of the input) have difficulty scaling up fork > 1. Colloquially, an algorithm is considered
scalable if its time and space complexity areO(n log n) or better. Algorithms (and the structure
they impose over data) are the most important aspect of creating a scalable system. Also, a dimen-
sion of algorithms that has become of high importance today is parallelization. Often scalability is
concerned with improving the speed or capacity of a system in proportion to the computational re-
sources available to it. An algorithm that can be decomposed in separately-computable tasks scales
better than one with a more serial data dependency pattern.

The statistical properties of data also affect scalability of a learning system.Machine learning
algorithms often make fundamental assumptions about their input’s properties. The extent to which
these assumptions are met affects the running time of the algorithm. For example,a neural network
will take a longer time to train if data is noisy and not easily separable.

Last but not least, implementation and systems-level optimization aspects are not to be ignored.
Often, changing a constant factor that is irrelevant with regard to complexity influences the time be-
havior of the algorithm considerably. Furthermore, on contemporary systems featuring deep mem-
ory hierarchies, data set size often affects speed dramatically, sometimes leading to paradoxical
effects.

With regard in particular label propagation, the essential scalability issues can be summarized
as follows:

• In-core graph size:the matricesPUL andPUU grow withu · t andu2 respectively;

• Graph building time: building PUL and PUU entails computing the similaritiesσ(xi, xj),
i ∈ {1, . . . , t} and j ∈ {t + 1, . . . , t + u}, plus the similaritiesσ(xi, xj), i, j ∈ {t +
1, . . . , t + u}, which, in a direct implementation, adds to a total count of similarity evalua-

tionst ·u+
u(u− 1)

2
. Such computation becomes prohibitive even for moderately-sized data

sets.

• Hyperparameter tuning:Optimization of ancillary hyperparameters is a machine learning
problem in its own right. A poorly chosen hyperparameter can affect the algorithm adversely,
whereas an extensive hyperparameter tuning process adds to the total running time of the
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algorithm. Tuning is particularly important in semi-supervised learning: The dearth of labeled
data typical to SSL setups also translates to low availability of cross-validation data (which is
used for tuning model parameters).

In wake of the varied concerns raised by scalability, this chapter includesa mix of theoretical-
algorithmic and practical-implementation considerations. Scalability being a cross-cutting issue, we
believe that the best strategy is a holistic approach that systematically addresses the problem at all
levels. Throughout this chapter, we will show how scalability is improved by the following tactics:

• Improve algorithmic complexity:For the graph building step, we exploit the structure of the
input (feature) space. The exact method depends on the properties ofthe space, for exam-
ple we use very different approaches in string space (Chapter 4) versus continuous space
(Chapter 3). For the label propagation step, we define an accelerated sequential convergence
algorithm and a parallel extension of it.

• Reduce the in-core data set size:Given a set of training and test data, we are aiming at
reducing the size of the in-memory structures that support the label propagation algorithm.

• Use simple, scalable, principled hyperparameter tuning:Hyperparameter tuning for the
Gaussian kernel used in conjunction with distance measures (§ 2.1) is a learning problem
of its own, which affects the duration of graph construction. In this chapter we propose a
simple and scalable tuning method inspired from maximum margin techniques.

Our approach to reducing computation and shrinkingPUL andPUU in size is to take advantage
of the structure of the input features to efficiently estimate the most similar items. Then, we ap-
proximate the rest to zero. The result is a graph with fewer edges—an approximation of the “real”
graph, but one that is of good quality because the most important edges are kept. (In fact, in most
problems, the similarity measure is only an estimate of the real similarity between samples, so elim-
inating low-weight edges often helps reducing noise in the graph.) Given that the approximatePUL
andPUU have many slots equal to zero, we can store them as a sparse matrices [70], which solves the
size scalability issue too.

We start by proving a few properties of interest of the label propagationalgorithm, after which
we will give an improved definition of the algorithm. The properties concern the evolution of inter-
mediate solutions (thefU matrix) during iteration towards convergence, and will allow us to devise
algorithms that converge faster. We will show that intermediate solutions growmonotonically when
starting from zero, and that improving an arbitrary element offU improves the global solution as
well (individual improvements are never in competition).

5.1 Monotonicity

How do elements offU evolve throughout Algorithm 1? Answering this question gives insight into
accelerating convergence, and also gives information about numeric stability and early stopping. To
this end we provide the following theorem.
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Theorem 5.1.1.When starting withf′U = 0 in Algorithm 1, each element offU increases monoton-
ically towards convergence.

Proof. By induction over the iteration stept.

Base: Fort = 1, fstep1
U = PULYL. Sincefstep0

U started at zero,
(

f
step1
U

)

ij
≥
(

f
step0
U

)

ij
∀i ∈

{1, . . . , u}, j ∈ {1, . . . , ℓ}.
Inductive step: At stept + 1

f
stept+1
U − f

stept
U = PUUf

stept
U + PULYL − PUUf

stept−1
U − PULYL (5.1)

= PUU

(

f
stept
U − f

stept−1
U

)

(5.2)

By the induction hypothesis,fstept
U − f

stept−1
U has only positive elements, so all elements in the

product are also positive.

Note that sincefstep1
U = PULYL, it is trivial to verify that

(PULYL)ij ≤
(

f
step∞
U

)

ij
≤ 1 ∀i ∈ {1, . . . , u}, j ∈ {1, . . . , ℓ} (5.3)

wherefstep∞
U is fU after convergence. This suggests that for faster convergence a good choice for

the initialfU is in the middle of its possible range:

(

f
step0
U

)

ij
=

(PULYL)ij + 1

2
(5.4)

We will use monotonicity to a greater effect in stochastic label propagation in §5.2. Also, mono-
tonicity has an important consequence with regard to numeric stability. As opposed to convergence
through alternating values, monotonic convergence always finishes even when computation is af-
fected by limited precision.

5.2 Stochastic Label Propagation

The order in which graph vertices are considered, i.e., the order of rows inP andYL do not matter for
convergence beyond node identity because none of the previously demonstrated theorems rely on
a specific order. Indeed, in the method of relaxations [68] (which is a serial uni-dimensional label
propagation iteration) nodes are spanned insomeorder, not a specific order. Intuitively, the order
could even be changed from one epoch to the next. In the following we prove a powerful theorem
that states not only that nodes can be spanned in any order, but even inrandom order, without regard
to possibly updating a node several times before updating all (or any) others. Of course, doing
this practically would be detrimental to performance, but this theorem has important consequences
with regard to unsynchronized parallel execution of label propagation, as well as accelerated serial
implementations.

First, let us introduce a new algorithm for label propagation. Instead of using matrix algebra to
update all elements offU in one epoch, Algorithm 2 updates exactly one randomly-chosen element
at a time.
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Algorithm 2 : Stochastic Label Propagation

Input : Labels 〈〈y1, . . . , yt〉〉 ∈ {1, . . . , ℓ}t; similarity matrixW ∈ R
(t+u)×(t+u)
+ with

wij = wji ≥ 0 ∀i, j ∈ {1, . . . , t + u}; toleranceτ > 0.
Output : Matrix fU ∈ [0, 1]u×ℓ containing unnormalized probability distributions over labels.
wii ← 0 ∀ i ∈ {1, . . . , t + u};1

pij ←
wij

t+u∑

k=1

wik

∀ i, j ∈ {1, . . . , t + u} ; // initialize P

2

(YL)row i ← δℓ(yi) ∀ i ∈ {1, . . . , t} ; // initialize YL3

fU ← 0;4

repeat5

i← random integer in{1, . . . , u};6

j ← random integer in{1, . . . , ℓ};7

(fU)ij ← (PULYL)ij +
u∑

k=1

(PUU)ik(fU)kj ;
8

until max
i∈{1,...,u}
j∈{1,...,ℓ}

∣
∣
∣(PUUfU + PULYL)ij − (fU)ij

∣
∣
∣ ≤ τ ;

9

Algorithm 2 is of no practical use because it is very inefficient: it performs only one update
and then a full test for the harmonic property forfU for every iteration. Moreover, one update does
not guarantee progress because it is possible that the particular elementchosen did already satisfy

the harmonic condition(fU)ij = (PULYL)ij +
u∑

k=1

(PUU)ik(fU)kj before the update. The purpose of

Algorithm 2 is solely to demonstrate that element updates can be performed in truly any order. We
now prove a lemma that is needed for the proof of convergence.

Lemma 5.2.1. If W and Y allow a harmonic matrixf∞U , then at the beginning of any iteration of
Algorithm 2,(fU)ij ≤ (f∞U )ij ∀i ∈ {1, . . . , u}, j ∈ {1, . . . , ℓ}.

Proof. By induction on iteration steps.
Base: MatrixfU starts at zero. The first update sets the slot to(fU)ij to (PULYL)ij . Then(fU)ij ≤

(f∞U )ij becausef∞U is the sum ofPUUf
∞
U andPULYL, andPUUf

∞
U has only nonnegative elements.

Inductive step: By the induction hypothesis, before the update,(fU)ij ≤ (f∞U )ij ∀i ∈
{1, . . . , u}, j ∈ {1, . . . , ℓ}. Therefore

(PULYL)ij +

u∑

k=1

(PUU)ik(fU)kj ≤ (PULYL)ij +

u∑

k=1

(PUU)ik(f
∞
U )kj (5.5)

as weighted average with positive coefficients inPUU. But the right-hand side term is equal to(f∞U )ij ,
so the new value is less than or equal to(f∞U )ij , which concludes the proof.
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Lemma 5.2.2.At the beginning of each iteration of Algorithm 2, the following condition is satisfied
∀i ∈ {1, . . . , u}, j ∈ {1, . . . , ℓ}:

(fU)ij ≤ (PULYL)ij +
u∑

k=1

(PUU)ik(fU)kj (5.6)

Proof. By induction on stept.
Base: Before the first step,(fU)ij = 0 ≤ (PULYL)ij .

Inductive step: During the(t+1)th step, all elements are not updated (thus vacuously satisfying
monotonicity), except one, call it(fU)ij . Taking the difference between the values before and after
stept + 1 yields:

(

f
stept+1
U

)

ij
−
(

f
stept
U

)

ij
= (PULYL)ij +

u∑

k=1

(PUU)ik

(

f
stept
U

)

kj
−
(

f
stept
U

)

ij
(5.7)

By the induction hypothesis,
(

f
stept+1
U

)

ij
−
(

f
stept
U

)

ij
≥ 0.

As a direct consequence of this lemma, elements offU increase monotonically throughout iter-
ations of Algorithm 2. We have shown thatfU has monotonically increasing elements and hasf∞U
as an upper bound, so by the monotone convergence theorem there exists a matrixf∗U = lim

t→∞
fU.

It is necessary to prove thatf∗U = f∞U , asfU may stop updating, leaving Algorithm 2 iteratingad
infinitum. Therefore we provide the following theorem. It is different from the proof of convergence
of classic label propagation [237] and from Theorem 2.3.2 by randomly improving one element of
thefU instead of the entirefU.

Theorem 5.2.3. If the random selection ofi and j in Algorithm 2 reaches every element in
{1, . . . , u} and {1, . . . , ℓ} respectively with probability greater than a constantp > 0, then Al-
gorithm 2 converges in the same conditions and to the same solution as Algorithm 1.

Proof. Givenp > 0, updating any given element inf is a binomial stochastic process that updates
each element with probability approaching 1 fort → ∞. By the two previous lemmas, elements
in fU are monotonically increasing and bounded, so there existsf∗U = lim

t→∞
f

stept
U . That matrixf∗U

satisfies(f∗U)ij = (PULYL)ij +
u∑

k=1

(PUU)ik(f
∗
U )kj ∀i ∈ {1, . . . , u}, j ∈ {1, . . . , ℓ}, which is easily

recognized as the element-wise form of the matrix relationf∗U = PULYL + (PUU)ikf
∗
U . But there is

only one harmonic function satisfying the relation forW andY, sof∗ = f∞.

5.3 Applications of Stochastic Label Propagation

Theorem 5.2.3 is very powerful because it offers an algorithm the freedom to update the elements
of fU under absolutely any schedule, without any ordering restriction. Moreover, and most impor-
tantly, convergence may also be faster than in the classic iterative label propagation because a new
value(fU)ij that is closer to the desired result is used immediately, as soon as it is computed,as
opposed to the epoch-oriented approach in which a whole set of updatesis computed on the side
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in one iteration to be used in the next. (However, memory hierarchy effects might make such an
implementation potentially slower if the order in whichfU is spannedis cache-unfriendly.) Most
interestingly, Theorem 5.2.3 allows updates offU performed by concurrent processes operating on
different row sections ofP. The fact that convergence is unaffected by the order of updating im-
plies that the algorithm is tolerant to out-of-order memory updates and benignraces, as long as each
individual update of a floating-point number is atomic.

The following two subsections propose two applications of Theorem 5.2.3 byintroducing two
distinct algorithms, one serial, one parallel.

5.3.1 In-Place Label Propagation

The idea behind in-place label propagation (Algorithm 3) is to do a classic matrix multiplication
(just as in the original iteration formula), but instead of computing a new matrixf′ from f, simply
reassign each element back tof as soon as it is computed.

Algorithm 3 : In-Place Label Propagation

Input : LabelsY; similarity matrixW ∈ R
(t+u)×(t+u)
+ with wij = wji ≥ 0

∀i, j ∈ {1, . . . , t + u}; toleranceτ > 0.
Output : Matrix fU ∈ [0, 1]u×ℓ containing unnormalized probability distributions over labels.
wii ← 0 ∀ i ∈ {1, . . . , t + u};1

pij ←
wij

t+u∑

k=1

wik

∀ i, j ∈ {1, . . . , t + u} ; // initialize P

2

(YL)row i ← δℓ(Yi) ∀ i ∈ {1, . . . , l};3

fU ← 0;4

repeat5

f′U ← fU;6

for i ∈ 〈〈1, . . . , u〉〉 do7

for j ∈ 〈〈1, . . . , ℓ〉〉 do8

(fU)ij ←
u∑

k=1

(PUU)ik(fU)kj + (PULYL)ij ;
9

end10

end11

until τ ≥ max
j∈{1,...,ℓ}

max
i∈{1,...,u}

(
fU − f′U

)

ij
;

12

Each epoch (i.e., a full pass through the outermostrepeat loop) first stores a copy offU in f′U
and then spansfU one element at a time. Each innermost loop iteration updates one element infU.
Algorithm 3 is similar to Algorithm 1 (with the matrix operation made explicit element-wise), with
one crucial difference. In Algorithm 1, a new estimate forfU was computedon the sideto then
replacefU for the next epoch. Algorithm 3, in contrast, computes new values forfU are computedin
placeand available immediately for subsequent computations within the same epoch. For example,
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the better estimate forfU values at row 1 are used to compute values at row 2. By the end of the
epoch, updates in rowu benefit of cumulative updates in all other rows. In contrast, at the end of
an epoch of Algorithm 1 still are updated with values computed in the previous epoch. This makes
Algorithm 3 converge faster than Algorithm 1, while still correct because of Theorem 5.2.3.

In-place updates put the termination condition under scrutiny. It would appear that computing
the maximum difference between elements offU andf′U would be an insufficient condition because
it could terminate the algorithm too early due to a subtle effect. Updates committed early in one
epoch are available for immediate use; therefore, later rows benefit of better approximations than
earlier rows. Conversely, at the end of any epoch, it is possible that elements in the first row are at
a much larger error than elements in the last row. For example, consider thatthe update made to
some columnc in the first row,(fU)1c was deemed correct. But after that, in the worst case,(fU)2c,
(fU)3c, . . . , (fU)uc also got updated, each within the maximum tolerance as well. Each of these
updates take(fU)1c further away from meeting the harmonic condition, however the algorithm may
be “fooled” into considering(fU)1c correct and terminate early with a large error at that position.
The following theorem shows that with its termination condition, Algorithm 3 does compute the
correct solution within toleranceτ .

Theorem 5.3.1.Algorithm 3 terminates and computes the harmonic functionf∞U within toleranceτ .

Proof. Termination results as a consequence of Theorem 5.2.3. The updates performed by Algo-
rithm 3 converge to the harmonic function, and after sufficiently many steps,the differencefU − f′U
drops below any constant value.

To prove correctness, we are interested in the state offU after the last iteration, and particularly
the way each element is influenced by elements changed after it. (If there was no influence, thenfU
would satisfy the charge.) Each element(fU)ij is affected by changes to(fU)(i+1)j , (fU)(i+2)j , . . . ,
(fU)uj . All changes are positive by the monotonicity theorem. But there is one difficulty—even
if (fU)ij − (fU)

′
ij is small indicating a small distance from the solution, that difference could be

increased by subsequent changes to the lower rows. We need to computethe deviation from the
harmonic condition. The harmonic value for(fU)ij at the end of the epoch is

hij =
u∑

k=1

(PUU)ik(fU)kj + (PULYL)ij (5.8)

The actual value computed for(fU)ij during the epoch is

(fU)ij =
i∑

k=1

(PUU)ik(fU)kj +
u∑

k=i+1

(PUU)ik(f
′
U)kj + (PULYL)ij (5.9)

form that clarifies that some updates were done with the old values copied inf′U and some updates
were done with already-updated values. To compute how far(fU)ij is from the harmonic condition
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at the end of the epoch, we take the differencehij − (fU)ij , obtaining

hij − (fU)ij =
u∑

k=i+1

(PUU)ik(fU − f′U)kj (5.10)

≤ max
k∈{i+1,...,u}

(fU − f′U)kj

u∑

k=i+1

(PUU)ik (5.11)

≤ max
k∈{i+1,...,u}

(fU − f′U)kj (5.12)

≤ max
k∈{1,...,u}

(fU − f′U)kj (5.13)

≤ max
j∈{1,...,ℓ}

max
k∈{1,...,u}

(fU − f′U)kj (5.14)

The last form is exactly the termination condition, so when the algorithm stops, all elements are
within τ of the harmonic condition.

The fact that only the maximum offU − f′U is needed allows us to compute the solution without
storingf′U at all, only the running maximum. This leads us to Algorithm 4, which does not requiref′U
anymore. (AlsoP can be easily computed as an in-place replacement overW, detail we left out of
Algorithm 4.) Such an implementation is important in environments where extra memoryallocation
is either not desirable or not possible. Also, on many contemporary architectures, a smaller working
set often translates in faster speeds for comparable computational load. Plus, when we scale to
multiple processors in the next section, it will be a notable advantage that each processor does not
need extra private memory.

Our practical experiments use Algorithm 4 as the basis for implementation.

5.3.2 Multicore Label Propagation

The most interesting practical consequence of Theorem 5.2.3 is that labelpropagation can be paral-
lelized easily and with low overhead on today’s processing architectures.

Classic label propagation can be easily parallelized to run on one processor for each of theℓ
labels. This is because computations of different columns infU are independent from one another
(the optional row-normalization must only be done at the end of convergence). This, however, is not
true scalability; most application have a small fixedℓ and a large variableu, so scaling up should be
performed by finding a way to divide work acrossu.

Theorem 5.2.3 and Algorithm 4 do allow scalability overu. If a system hask processors, each

processor computes in-place
u

k
rows of a shared matrixfU. The crucial aspect that pertains to

scalability is that writes to elements offU, although they do engender race conditions (because
a value written by one process is read by all others), do not need to be synchronized at all per
Theorem 5.2.3 if we assume that each write is atomic. Also, each processor reads data written
by others and writes data never written by others, so there are no write-after-write conflicts that
could cause wasted computation. But an issue of wasted computation still exists. Although newly
computed values are never lost (there is guaranteed overall progress), computation power is spent
on recomputing the same value, assuming there are no updates to a particular column.
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Algorithm 4 : Memory-Economic In-Place Label Propagation

Input : LabelsY; similarity matrixW ∈ R
(t+u)×(t+u)
+ with wij = wji ≥ 0

∀ i, j ∈ {1, . . . , t + u}; toleranceτ > 0.
Output : Matrix fU ∈ [0, 1]u×ℓ containing unnormalized probability distributions over labels.
wii ← 0 ∀ i ∈ {1, . . . , t + u};1

pij ←
wij

t+u∑

k=1

wik

∀ i, j ∈ {1, . . . , t + u} ; // initialize P

2

(YL)row i ← δc(yi) ∀ i ∈ {1, . . . , t};3

fU ← 0;4

repeat5

τm = 0;6

for i ∈ 〈〈1, . . . , u〉〉 do7

for j ∈ 〈〈1, . . . , ℓ〉〉 do8

a← (fU)ij ;9

(fU)ij ←
u∑

k=1

(PUU)ik(fU)kj + (PULYL)ij ;
10

τm ← max(τm, (fU)ij − a);11

end12

end13

until τ ≥ τm ;14

With regard to atomicity of writes, on a 32-bit system, a parallel implementation necessitates
that each floating-point value is written and read atomically. A single-precision IEEE 754 value is
written atomically, whereas on a 64-bit system, a double-precision IEEE 754is written atomically.
(Most 32-bit systems allow atomic 64-bit writes through special processorinstructions.) A 32-bit
system that needs to perform 64-bit computations can combine Algorithm 4 with Algorithm 1 to
perform computations on the side (in private memory). A rendez-vous mechanism at the end of
each epoch synchronizes over all processors and commits batched changes in bursts, thus factoring
interlocking costs over many writes. A different approach to 64-bit computation on 32-bit machines
is to first run a parallel algorithm on 32-bit floating point numbers. The result of this algorithm can
be converted to 64-bit numbers and used as the initial values for the serialversion of the algorithm.
Since the 32-bit result is a close approximation of the harmonic function, the serial part of the
algorithm will converge rapidly.

Ironically, although unsynchronized writes are beneficial, they also raise the problem of ter-
mination detection: since all processes are independent, there is no coordination and therefore no
chance to tell the processors when to stop. Therefore, a minimum amount ofcoordination must be
added to stop when the harmonic function has been computed within a given tolerance. Each epoch,
every process must check on a shared “continue” Boolean variable that informs the process whether
it should continue or terminate. A separate process runs independently ofall others, just check-
ing whetherfU satisfies the harmonic property within toleranceτ . Once that happens, the separate
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process sets the “continue” shared variable to false, and all threads terminate. The monotonicity
theorem ensures that any extra work done afterfU has passed the harmonic test with toleranceτ will
only improve the solution.

An important advantage of a parallel application of Algorithm 3 manifests itself on relaxed
memory models,1 which, at the time of this writing, dominate the multiprocessor desktop comput-
ing market. In a relaxed memory model, updates to shared memory performed byone processor may
not be seen by other processors in the same order as they are written. Animportant consequence of
Theorem 5.2.3 is that out-of-order reads and writes do not affect convergence. Also, on certain mul-
tiprocessor machines, special instructions must be issued at least once an epoch to make sure data
is (a) committed to shared memory, and (b) re-loaded from shared memory. Otherwise, updates or
some of the updates may only be written to and/or read from local, processor-private cache memory.
If such instructions are only executed once per epoch, the overhead incurred by synchronization is
negligible. Although this chapter does not aim at devising machine-specific algorithms, we do want
to convey that Algorithm 3 is directly convertible into scalable parallel implementations of label
propagation on a variety of processor architectures.

5.4 Reducing the Number of Labeled Nodes in the Graph

Existing work [65] reduces the number of nodes in the graph by using a subset selection method,
at the expense of precision. The algorithm proposed below reduces thenumber of labeled nodes
from t to ℓ without impacting in any way the precision of the classification. Concrete applications
usually have much fewer distinct labels (e.g., a handful up to a few thousand) than labeled samples
(thousands to billions), so the reduction—often on the scale of many ordersof magnitude—is highly
beneficial. It is always safe to assume thatt ≥ ℓ; if that is not the case, then there exist out-of-sample
labels. Given that they are never hypothesized, the out-of-sample labelscan be simply eliminated
during a preprocessing step.

The intuition behind the reduction process is that labeled nodes having the same label can be
“collapsed” together because their identity does not matter.

Lemma 5.4.1. Consider the matricesP ∈ [0, 1](t+u)×(t+u) andf ∈ [0, 1](t+u)×ℓ initialized for the
label propagation algorithm. Define the matrixR(a, b) ∈ [0, 1](t+u−1)×(t+u−1), where1 ≤ a <
b ≤ t, obtained fromP by adding theath column to thebth column, followed by the elimination of
theath row andath column:

R(a, b) =





p1,1 ... p1,a−1 p1,a+1 ... p1,a+p1,b ... p1,n
...

pa−1,1 ... pa−1,a−1 pa−1,a+1 ... pa−1,a+pa−1,b ... pa−1,n

pa+1,1 ... pa+1,a−1 pa+1,a+1 ... pa+1,a+pa+1,b ... pa+1,n
...
pn,1 ... pn,a−1 pn,a+1 ... pn,a+pn,b ... pn,n



 (5.15)

1Not to be confused with the method of relaxations; the two terms are unrelated.
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Also define the matrixg(a) obtained by eliminating theath row off:

g(a) =











f11 f12 ... f1ℓ

...
f(a−1)1 f(a−1)2 ... f(a−1)ℓ

f(a+1)1 f(a+1)2 ... f(a+1)ℓ

...
ft+u1 ... ft+uℓ











(5.16)

If the rowsa andb off are identical, then usingR(a, b) andg(a) for the label propagation algorithm
yields the same label predictions for the unlabeled data (the bottomu rows ofg(a), which we denote
asg(a)U) as the predictionsfU obtained by usingP andf.

Proof. Consider the iterative stepf′ ← Pf. The elementf′kj is:

f′kj =
t+u∑

i=1

pkifij = pkafaj + pkbfbj +
t+u∑

i=1

i/∈{a,b}

pkifij (5.17)

But faj = fbj by the hypothesis, therefore:

f′kj = (pka + pkb)fbj +
t+u∑

i=1

i/∈{a,b}

pkifij (5.18)

It can be easily verified by inspection that:

f′kj =

{

g′(a)kj if a ∈ {1, . . . , k}
g′(a)(k−1)j if a ∈ {k + 1, . . . , t + u}

∀ j ∈ {1, . . . , ℓ} (5.19)

whereg′(a) = R(a, b) · g(a). Given thata < t (by the hypothesis), it follows thatf′ andg′(a)
contain the same values in their bottomu+1 rows. (The top rows are clamped and do not participate
in the result.) So one step preserves the intermediate result.

By induction over the steps of the iteration, it follows that both iterations converge and after
convergence,R(a, b) andg(a) will yield identical label predictions asP andf.

This means that the graph for Zhu’s label propagation can be reduced by one labeled sample
whenever there are two labeled samples having he same label. Applying the reduction process
iteratively, we obtain the following theorem.

Theorem 5.4.2(Graph Reduction). Consider a graph witht labeled points (accounting forℓ labels)
andu unlabeled points, as constructed for the label propagation algorithm. If all labeled nodes for
each given label are collapsed together and the resulting parallel edges are linearly superposed
(reduced to one edge by summing their weights), then the resulting graph with ℓ labeled nodes
yields the same label predictions for the unlabeled data as the original graph.
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Proof. The preconditions of Lemma 5.4.1 are respected as long as there are at least two labeled
nodes with the same label. This means we can apply one reduction step until onlyℓ labeled node
remain. During the reduction, by Lemma 5.4.1, the label propagation results are preserved.

After reduction has been effected, a reduced matrixRmin ∈ [0, 1](ℓ+u)×(ℓ+u) and a reduced label
matrix gmin ∈ [0, 1](ℓ+u)×ℓ, an important reduction in size. The process of reduction requires only
O (t + u(t + u− ℓ)) additions and does not require additional memory. The required memory for
an exact implementation is reduced fromO

(
(u + t)2

)
toO

(
(u + ℓ)2

)
.

5.5 Graph Reduction for Structured Inputs and Outputs

We have shown in Theorem 5.4.2 that all training vertices carrying the same label can be collapsed
into one if the resulting parallel edges are summed. We apply that result to the graph built for
learning with structured inputs and outputs introduced in Chapter 4, Definition4.2.2. In that graph,
all source vertices can be collapsed into one source vertex, and all sinkvertices can be similarly
collapsed into one sink vertex. The resulting graph has only one source and one sink, as per the
definition below, which is a refinement of Definition 4.2.2 where graph reduction has been implicitly
carried.

Definition 5.5.1 (Graph-Based Formulation of Structured Learning with Only Positive Training
Samples with Graph Reduction). Consider a structured learning problem defined by featuresX =
〈〈x1, . . . , xt+u〉〉 ⊆ X , training labelsY = 〈〈y1, . . . , yt〉〉 ⊆ Y, similarity functionσ : (X ×
Y) × (X × Y) → [0, 1], and hypothesis generator functionχ : X → F(Y). A similarity graph
for the structured learning problem is an undirected weighted graph with real-valued vertex labels,
constructed as follows:

• add one distinguished vertexv+ with label 1;

• add one distinguished vertexv− with label 0;

• add one vertex vij (with initial label 0) for each hypothesis(χ(xi))j , j ∈
〈〈1, . . . , card(χ(xi))〉〉 , of each test samplei ∈ 〈〈t + 1, . . . , t + u〉〉 ;

• for each vertexvij , define one edge linking it tov+ and one linking it tov−, with the respective
weights

wij+ =
t∑

k=1

σ( 〈〈xi, (χ(xi))j〉〉 , 〈〈xk, yk〉〉 ) (5.20)

wij− = Cij − wij+ (5.21)

• for each pair of verticesvij andvkl, define an edge linking them with weight

wijkl = σ( 〈〈xi, (χ(xi))j〉〉 , 〈〈xk, (χ(xk))l〉〉 ) (5.22)
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By Theorem 5.4.2, this graph computes the same scores as the much larger graph in Defini-
tion 4.2.2, a result that may seem counterintuitive. The ability to collapse together train sentences
stems from all train sentences having the same score, therefore their identitydoes not matter: the
identity of similar training sentences is not relevant; what matters for the assignment of scores to
the test hypotheses is their global similarity with the training set, or, more precisely, their average
similarity with their entire neighborhood of labeled points considered as a whole. A graph could be
set up such that individual training sentences, or categories thereof,are meaningful to the approach
(e.g. when confidence information is associated with each training sample).

5.6 Fast Graph Construction in Jensen-Shannon Space

We now turn our attention to computing distances in the real-valued multidimensionalspaces dis-
cussed in Chapter 3. Recall that in many HLT applications, the inputs are a mix of categorical,
Boolean, and real-valued features. The data-driven construction process with two passes presented
in § 3.3 uses a first-pass classifier to convert the often heterogeneous input features to probability
distributions. The main merit of this setup is that it provides the graph-based algorithm with features
that are amenable to good similarity definitions. Operating directly on the originalheterogeneous
features using a generic distance measure such as Euclidean (Eq. 3.3) or Cosine (Eq. 3.5) is arguably
suboptimal. Our experiments in Chapter 3 have shown that, indeed, using such distances with label
propagation yields inferior results in terms of accuracy when compared to the two-pass system.

Let us recap how similarities are computed in our two-pass system. An often-used approach that
we also adopted is to define similarity as a Gaussian kernel over a distance measured : X×X→ R+

(recall § 3.2 and Eq. 3.2):

σα : X× X→ (0, 1] σα(xi, xj) = exp

[

−d(xi, xj)
2

α2

]

(5.23)

Computationally, this reformulates computing similarities into computing distances plus acon-
stant per-pair amount of work. Also, the equation reveals that the similarity measure is more fine-
grained for points close in space than for widely separated points; the function e−x2

is rapidly
decreasing, for exampleσα(xi, xj) ≈ 10−7 for d(xi, xj) = 4α.

Characterizing distances between probability distributions and the topologiesthat distances in-
duce over distributions is a topic that has recently received increasing attention from not only ma-
chine learning researchers, but also statisticians. Usually distances between distributions are derived
from probabilitydivergences. To clarify a terminological detail that may sometimes cause confusion
due to the different uses in literature:

• A divergenceis a relation (usually defined over probability distributions) that indicates to
what extent one sample “diverges” from another. Often, one of the samples is considered the
reference. As such, divergence relations are not necessarily symmetric (commutative).

• A metricis a relation with the classic metric properties, i.e. (a) it is positive, (b) it is zeroonly
for identical arguments, (c) it is symmetric, and (d) it satisfies the triangle inequality. Refer
to § 3.4 on page 22 for formal definitions of these properties.
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• A distanceis a relation that measures the dissimilarity of elements in a set. It must (only) be
positive and symmetric. Literature often uses the terms “distance” and “metric”interchange-
ably because distances of choice are often actually metrics, but since recently non-metric
distances have received increasing attention [2], this work carefully distinguishes between the
two.

As described in detail in § 3.4, there exist several divergence measures defined over probability
distributions, of which Jensen-Shannon divergence (which is a symmetrized and bounded Kullback-
Leibler divergence) was the one that was most successful in our experiments (§ 3.6, § 3.7) and will
be the main focus of our examples. We repeat here the definitions of Kullback-Leibler divergence
(Eq. 3.14) and Jensen-Shannon divergence (Eq. 3.18) for convenience:

dKL(z, z
′) =

ℓ∑

i=1

z[i] log
z[i]

z′[i]

(5.24)

dJS(z, z
′) =

1

2

[

dKL

(

z,
z[i] + z

′
[i]

2

)

+ dKL

(

z
′,

z[i] + z
′
[i]

2

)]

(5.25)

Jensen-Shannon divergence has been used in a variety of statistical analysis and machine learn-
ing tasks, such as testing the goodness-of-fit of point estimations [158],the analysis of DNA se-
quences [22, 191, 23], and image edge detection [94].

We will loosely refer to the space formed by probability distributions using Jensen-Shannon
divergence for measuring distances as “Jensen-Shannon space.”We are looking at finding the most
similar items according to the similarity in Eq. 5.23 that operates on top of the Jensen-Shannon
divergencedJS. Given thatσα is monotonically decreasing, finding the most similar samples is the
same as finding the ones at the smallestdJS from one another.

5.6.1 Nearest Neighbor Searching

A brute-force approach to creating the unlabeled-to-unlabeled edges (matrix PUU introduced in
Chapter 2) would entail computing the similarities over the cross-product〈〈xt+1, . . . , xt+u〉〉 ×
〈〈xt+1, . . . , xt+u〉〉 , resulting in

u(u− 1)

2
evaluations of the similarity function. In addition, creat-

ing PUL entailsu · t similarity evaluations. For large values ofu (and/ort), exhaustive computation
of all similarities is infeasible. Therefore, it is common to only include thek edges with the largest
similarity values for each node in the graph, and to use fast methods for finding thek nearest neigh-
bors. Edges with low weights can be ignored because they encode low-probability paths in the
random walk. This is an instance of the nearest-neighbors problem.

Searching for the nearest neighbors has many applications in a variety ofproblems, such as
information retrieval [194], storing and querying media databases [203,79], data mining [21], and
of course machine learning at large [101, 104].

For dimensionalityd ≤ 2 the problem of scalable nearest neighbors has been solved: There
are known methods that complete a query inO(d log n) with preprocessing takingO(d · n) space
andO(d · n log n) time. In one-dimensional spaces the approach is the well-known binary search
on a sorted array, or constructing and using a search tree. In two-dimensional spaces the optimal
algorithms are using Voronoi diagrams [10].
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Voronoi introduced the eponymous diagram [10] in 1907–1908. A Voronoi diagram is a decom-
position of a metric spaceM containing points of a setS in convex disjoint cells. Each point in
s ∈ S is associated with exactly one cell containing all points inM closer tos than to any other
point in S. Consequently, cell boundaries (situated on perpendicular bisector hyperplanes) are at
equal distance from two or more points inS, and the disjoint union of all cells cover the entire
spaceM . Once a Voronoi diagram is built, finding the nearest neighbor of a givenpoint is a matter
of finding the cell to which the point belongs. Voronoi diagrams have beenresearched mostly in
two [34, 227] or three [80] dimensions; in higher-dimensional spacesd > 3, storage requirements

Θ(n
d
2 ) make the approach impractical.

In 1967 Cover and Hart formally defined nearest-neighbor decision rule for classification [55].
This insight, combined with an increased interest in the theory and practice ofmachine learning,
has prompted further research in the area, particularly in spaces with large number of dimensions.

For higher-dimensional spaces (d > 2) there is no known solution that is generally satisfactory.
Kleinberg initiated the idea of providing theoretical bounds by putting restrictions on the distance
measure [121]. Karger and Ruhl defined the all-important expansion rate of a sample set [114].

Approaches to nearest neighbor algorithms fall in several categories,including locality-sensitive
hashing [91], walk-based techniques (such as the approximating eliminatingsearch algorithm
a.k.a. AESA [222, 160], Orchard’s algorithm [177], Shapiro’s algorithm [199]), and a large num-
ber of tree-based techniques. The latter algorithms organize data in a tree structure and search
using a technique derived from the branch-and-bound general strategy. The goal is to organize the
space such that large portions of it do not need to be searched. The most popular of these are
kd-trees [19, 17, 18], metric trees [49], and Cover Trees [24]. These tree structures requireO(n)
storage space and practically require in-core presence of the entire training data set (for building the
node-based trees). The build and query complexity of trees increase rapidly with c e.g.O(c6 log n)
andO(c12 log n) for cover trees.

Recent empirical comparisons against data obeying a variety of distributions suggest that these
techniques generally yield little or negative improvement over kd-trees in buildand query time [117].
We therefore chose kd-trees as our nearest-neighbors method of choice (implemented as an opti-
mized library in the D programming language), but we emphasize that any nearest neighbor tech-
nique could be chosen for Jensen-Shannon space. In particular, given that Jensen-Shannon diver-
gence is the square of a metric (the transmission metric [77, 37]), searchingtechniques that make
use of the triangle inequality (e.g. AESA, metric trees or cover trees) can beused as long as

√

dJS

is used for searching instead ofdJS. (The end result is not affected because the square root function
is monotonically increasing.) Our focus on kd-trees is motivated not only by their good empirical
performance and lasting success, but also by their direct applicability to Jensen-Shannon spaces, as
discussed below.

5.6.2 Using kd-trees in Jensen-Shannon Space

K-Dimensional Trees (kd-trees) have been proposed by Bentley [19] andwere first analyzed theo-
retically by Friedman, Bentley, and Finkel [85, 18, 16]. In spite of their age, kd-trees are a widely
used and investigated data structure for performing fast nearest-neighbor searches. We will first de-
scribe kd-trees as originally proposed and as usually introduced in the literature [166], after which
we will follow with considerations specific to using kd-trees with the Jensen-Shannon divergence.
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A kd-tree built over a space embedded inR
K is a binary tree that stores, at each nodeν, a finite

collection of pointsZν = 〈〈zν1, . . . , zν|Zν |〉〉 ∈ R
K×|Zν |. Inner nodes also store acutting dimension

as a numberdν ∈ {1, . . . , K}, acutting valuecν ∈ R, and left and right children nodes which we
denote asleft(ν) andright(ν). (Slight variations in the exact information stored are possible, as
long as the fundamental information can be accessed efficiently.) There are two invariants governing
a kd-tree:

1. If ν is the root node, it covers the entire point set:

Zν = Z (5.26)

2. If ν is a non-leaf node:

Zleft(ν) ∪ Zright(ν) = Zν (5.27)

Zleft(ν) ∩ Zright(ν) = ∅ (5.28)

z[dν ] ≤ cν ∀ z ∈ Zleft(ν) (5.29)

z[dν ] ≥ cν ∀ z ∈ Zright(ν) (5.30)

Note how samples withz[dν ] = cν may fall in either the left or the right subtree. This simplifies
certain tree building algorithms and their associated data structures, as discussed in the next section.
Also, this ambiguity predicts that kd-trees have problems organizing highly clustered point sets:
if many points have the same coordinate values, kd-tree structuring is unableto add information
helping the search. (Restricting Eq. 5.29 or Eq. 5.30 to use strict inequality would not improve on
this issue for reasons that will be clarified in § 5.6.2.2.)

Discrimination by comparison of dimensiondν against valuecν effectively introduces a cutting
hyperplane orthogonal to thedth

ν Cartesian axis at point distancecν from the origin. Points are placed
in the left or right sub-tree depending on the side of the hyperplane they are on. (Points situated on
the hyperplane may be placed in either subtree, but never both.) If we imagine the complete setZ
as bounded by the smallest hyperrectangle that includes all ofZ ’s points, a kd-tree organizes that
hyperrectangle into smaller disjoint hyperrectangles.

Save for observing the invariants in Eq. 5.26–5.30, kd-tree building algorithms have discretion
regarding the strategy of choosing the cutting dimensiondν and the cutting valuecν . We will discuss
some popular tree building strategies below.

5.6.2.1 Building kd-trees

Implicit kd-trees The simplest building strategy is:

• Choosedν in a round robin fashion going down the tree: usedν = 1+ depth(ν) mod K for
each node, i.e. the root splits at dimension 1, the root’s children split at dimension 2, and so
forth, resetting the counter whenever the depth reaches a multiple ofK.

• Choosecν to be the median of the projections ofZν on dimensiondν . For example, ifdν = 5,
cν is the median of values(zν1)[5], . . . , (zν|Zν |)[5].
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Choosing the median as pivot always leads to a balanced tree of sizeO(|Z|) and depth
O(log |Z|) because each node has a roughly equal number of left and right children. However,
balanced trees do not guarantee fast searching because, unlike in binary trees organizing one-
dimensional number sets, the tree does not guarantee that search can always proceed in only one
branch.

One advantage of the simplest strategy is that it can organize an array of points in-place, without
requiring any additional storage. Such kd-trees in which the tree structure is implied by the naviga-
tion algorithm are calledimplicit kd-treesand are mainly used in three-dimensional modeling and
virtual reality applications [224, 73]. The implicit structure is that for any given array, the root node
covers the entire array and the left and right children cover each one half of the array. Applying
this rule recursively through the trivial array of size 1 induces the implicit kd-tree. Algorithm 5
organizes an array into an implicit kd-tree.

Algorithm 5 : IMPLICITKDTREE: Organizes an array into an implicit kd-tree.

Input : Array Z = 〈〈z1, . . . , z|Z|〉〉 ∈ R
K×|Z|; splitting dimensiond ∈ {1, . . . , K} (initial

value arbitrary, e.g. 1).
Output : Z is organized as an implicit kd-tree.
if |Z| > 1 then1

s←
⌊ |Z|

2

⌋

;
2

partition(Z, s, d);3

d← 1 + d mod K;4

IMPLICITKDTREE(Z [1..s] , d);5

IMPLICITKDTREE(Z [s + 1..|Z|] , d);6

end7

The algorithm avails itself of the procedurepartition which is an array partitioning algorithm,
for example the classic “Median of Medians” algorithm by Blum et al. [30] which runs in expected
O(|Z|) time. This bound leads to a totalO(|Z| · log |Z|) expected run time for IMPLICITKDTREE

(taking into account that the recursion depth is alwaysO(log |Z|). The partitioning criterion is
ordering comparison of projections on dimensiond.

Implicit kd-trees are attractive in organizing large data sets with features homogeneously spread
across all dimensions. If heavy clustering across specific dimensions occurs, implicit kd-trees are
not very helpful because they partition data in a manner that does not takethe data characteristics
into account. Partial parallelization of the construction process is possible because after partitioning
the two sub-arrays are entirely isolated from each other so there is no sharing contention between
them.

Splitting Across the Largest-Spread Dimension An improvement to the strategy used by im-
plicit kd-trees is to not choose the cutting dimension in a round-robin fashion, but instead use the
dimension with the largest spread. This rule was proposed with the original kd-tree definition. A
small amount of additional storage is needed in the form of an implicit tree (i.e., array) of split-
ting dimensions. The complexity of the building process remains the same. This rule still builds
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a balanced tree, but the hyperrectangles that divide the space may be arbitrarily elongated. Such
elongated shapes are adverse to the searching process because in theworst case two points may be
deemed close (by virtue of being in the same box), yet may be arbitrarily far from each other by
being situated at opposite ends of an elongated box.

Splitting Across the Midpoint A technique that always constructs hyperrectangles with small
aspect ratios is to split across the midpoint of the longest side. This approach, however, may result
in empty cells, i.e. hyperrectangles that contain no points at all. Therefore there is no bound on the
depth of the tree or the number of nodes in it.

Hybrid Strategies Several strategies (including, but not limited to, the ones enumerated above)
may be mixed and matched. For example, the popular Approximate Nearest Neighbor (ANN) li-
brary [8] defines construction strategies that e.g. attempt first to split across the midpoint and then
move the midpoint such that no empty cells result. The best strategy to choose ineach situation is,
of course, dependent on the nature of the data set at hand.

5.6.2.2 Searching a kd-tree

The search process—as described by Friedman, Bentley, and Finkel [85]—first descends the tree
recursively searching the point in the same (and smallest) bounding box asthe query pointzq ∈ R

K .
If the bounding boxes as created by the tree building algorithm are reasonably small in volume and
aspect ratio, then a good approximation of the nearest neighbor has already been found. Keeping that
point as a running candidatezc (with the corresponding candidate distanced(zq, zc) = rc ∈ R+),
the algorithm climbs back the tree as it unwinds recursion. At each node climbed, if the intersection
between the hypersphere centered atzc of radiusrc and the other (as of yet unvisited) hyperrectangle
of that node is non-null, the other child of the current node is also searched in a similar manner. The
candidatezc is replaced whenever a better candidate is found.

Two aspects are key to a good search performance. One is finding a good candidate in the de-
scent phase with a small distancerc. A good candidate eliminates the need for searching most or all
unvisited subtrees in the unwinding phase, and leads to completing the searchin logarithmic time.
This aspect is dependent on the statistics of the data, the position of the query point relative to the
point set, and the kd-tree build process. The other important aspect is ensuring that the intersec-
tion between the hypersphere centered atzc of radiusrc and a hyperplane is cheaply computable.
Achieving this goal depends on the characteristics of the distance functionused.

Algorithm 6 (KDSEARCH) shows a definition of the search algorithm. It uses two subrou-
tines that we will discuss in detail in short order. In brief, BOUNDSOVERLAPBALL (R, z, r) checks
whether the rectangleR and the hypersphere (ball) centered inz with radiusr have a non-null in-
tersection. Second, the function BOUNDSENCLOSEBALL (R, z, r) checks whether the hypersphere
centered inz with radiusr is containedentirelywithin the hyperrectangleR.2 The latter function is
an optimization that is not present in some tutorial introductions to kd-trees [166], but was proposed
alongside with the algorithm proposed by Friedman, Bentley, and Finkel [85]. To put Algorithm 6

2The subroutine was originally called “BALL -WITHIN -BOUNDS” [85], but we chose “BOUNDSENCLOSEBALL ”
because it has the same natural parameter order as “BOUNDSOVERLAPBALL .”
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in relation with that algorithm, the original definition used an augmented languageinstructiondone
to terminate recursion immediately; in contrast, Algorithm 6 adds a Boolean valuec to the returned
tuple and checks it after each recursive call. This makes the algorithm’s definition marginally more
complicated but also closer to a direct implementation.

Algorithm 6 : KDSEARCH. Searching a kd-tree for the nearest neighbor of a query point [85].
Input : kd-treeT ; bounding hyperrectangleR =∞; query pointzq; candidate distancerc =∞; candidate point

zc = undefined.
Output : Tuple of nearest point, smallest distance, and completion information〈〈zn, rn, c〉〉 .
if isLeaf(T ) then1

r ← min
z∈T

d(zq, z);2

if r < rc then3
〈〈zc, rc〉〉 ← 〈〈zT , r〉〉 ;4
if BOUNDSENCLOSEBALL (R, zq, rc) then return 〈〈zc, rc, true〉〉 ;5

end6

else7
if (zq)[dT ] < cT then8

T
′ ← left(T );9

T
′′ ← right(T );10

R
′ ← leftCut(R, dT , cT );11

R
′′ ← rightCut(R, dT , cT );12

else13
T

′ ← right(T );14
T

′′ ← left(T );15
R

′ ← rightCut(R, dT , cT );16
R

′′ ← leftCut(R, dT , cT );17

end18
〈〈z′

c, r
′
c, c〉〉 ← KDSEARCH(T ′

, R
′
, zq, rc);19

if c then return 〈〈z′
c, r

′
c, true〉〉 ;20

if r
′
c < rc then21
〈〈zc, rc〉〉 ← 〈〈z

′
c, r

′
c〉〉 ;22

end23
if BOUNDSOVERLAPBALL (R′′

, zq, rc) then24
〈〈z′′

c , r
′′
c , c〉〉 ← KDSEARCH(T ′′

, R
′′
, zq, rc);25

if c then return 〈〈z′′
c , r

′′
c , true〉〉 ;26

if r
′′
c < rc then27
〈〈zc, rc〉〉 ← 〈〈z

′′
c , r

′′
c 〉〉 ;28

end29

end30

end31
return 〈〈zc, rc, false〉〉 ;32

Before discussing the subroutines BOUNDSOVERLAPBALL and BOUNDSENCLOSEBALL , let
us note several refinements and improvements that can be effected in Algorithm 6. These include:

• Using buckets:Instead of storing exactly one point in each leaf,b > 1 points can be stored,
thus making each leaf a bucket. Inside a bucket, brute-force search is used. Bucketing may
save on tree allocation and navigation.
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• Using simplified distances:A simple observation is that instead of the distance function, any
monotonically-increasing function of the distance is allowed because it will yield the same
nearest neighbors. This possibility can be used to reduce computational needs. For exam-
ple, instead of computing Euclidean distance, the algorithm can operate on squared distances
throughout; generalizing to Minkowski distances of orderp, the algorithm can operate on
distances raised to the powerp.

• Incremental distance calculation:Arya and Mount [9] have proposed an ingenious technique
to save computation when calculating the distance between the query point andthe hyperrect-
anglesR′ andR′′. Using their technique makes the complexity of BOUNDSOVERLAPBALL

constant, whereas the canonical implementation of the function takesO(K) time. However,
their improvement only applies to Minkowski distances, so it is not of interestto Jensen-
Shannon divergence.

• Searching fork nearest neighbors:The algorithm can be readily adapted to find not only
the closest neighbor, but thek nearest neighbors. This can be easily done by manipulating a
priority list (e.g. binary heap) of tuples in lieu of the tuple(zc, rc). Whenever Algorithm 6
compares a potential replacement against the current best candidate, itmust be changed to
compare against the top of the heap (the worst match of the bestk matches). If the potential
replacement is better, it will replace the worst match in the heap. The complexityof the
function grows by a factor ofO(log k), which is usually negligible.

5.6.2.3 Defining Core Routines. Distance Requirements

BOUNDSENCLOSEBALL and BOUNDSOVERLAPBALL form the core of the algorithm and also
impose specific requirements on the distance measure. This section discusses these requirements
and verifies thatdJS satisfies them.

An arbitrary distance function would lead to an arbitrarily complex definition for the two prim-
itives, leading to failure of the entire approach. In their paper analyzing kd-trees [85], Friedman,
Bentley, and Finkel remarked that the distance measure does not need to be a metric, but instead
must obey a different set of requirements, also discussed by Reiss et al. [188].

The entire kd-tree method relies on the assumption that the functiond(z, z′) grows mono-

tonously with
∣
∣
∣z[i] − z

′
[i]

∣
∣
∣ in any dimensioni. A simplifying step is to restrict analysis to distance

functions of the form:

d(z, z′) = D

(
K∑

i=1

di

(

z[i], z
′
[i]

)
)

(5.31)

di : K
2 → K

′ (5.32)

D : K
′ → R (5.33)

K, K′ ⊆ R (5.34)

Although imposing this form tod seems rather restrictive, most distance functions naturally
come in this form. For example, for Minkowski distances of orderp defined asLp(z, z′) ,
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(
F∑

i=1

∣
∣
∣z[i] − z

′
[i]

∣
∣
∣

p
)1/p

(also refer to § 3.2.1 and Eq. 3.3), we haveD(x) = x1/p anddi(x, x′) =

∣
∣x− x′

∣
∣p. However, the cosine distance function (§ 3.2.1, Eq. 3.5) notably does not fit this mold.

(However, cosine distance being the square of a metric, other algorithms such as metric trees can be
used in conjunction with it.)

Given the form in Eq. 5.31, Friedman et al. [85] defined the following restrictions the distance
function’s components in order to be usable with kd-trees:

1. All of di are symmetric:

di(x, x′) = di(x
′, x) (5.35)

2. The partial applicationsdi|x′=x0 : K→ R, di|x′=x0(x) , di(x, x0) have exactly one nonneg-
ative local minimum atx = x0 for all x0 ∈ K:

x0 ≤ x ≤ x′ ⇒ di(x0, x) ≤ di(x0, x
′) (5.36)

x0 ≥ x ≥ x′ ⇒ di(x0, x) ≥ di(x0, x
′) (5.37)

3. The distance between identical points is zero:

di(x, x) = 0 ∀x ∈ K (5.38)

(The original paper analyzing the distance requirements for kd-trees byFriedman, Bentley,
and Finkel [85] does not mention the requirement in Eq. 5.38. However, that requirement is
necessary, as clarified by the two theorems below. The omission might have gone unnoticed
because virtually all distance measures between identical points have zerocomponents in all
dimensions.)

4. The functionD is monotonically increasing:

x ≤ x′ ⇒ D(x) ≤ D(x′) (5.39)

We now define BOUNDSENCLOSEBALL and BOUNDSOVERLAPBALL to take advantage of
these restrictions. The following two algorithm definitions and their associatedcorrectness proofs
are similar to those introduced by Bentley et al. [85].

BOUNDSENCLOSEBALL The invocation BOUNDSENCLOSEBALL (R, z, r) (Algorithm 7) re-
turns true if the hyperrectangleR engulfs completely and strictly (no tangent points) the hyper-
sphere centered atz of radiusr, and false otherwise. The function carries the task by simply
evaluating in each dimension whether the extrema of the hypersphere fall outside of the extrema
of the hyperrectangle. The hyperrectangle is represented as two points:the corner with the lowest
coordinates, denoted asRmin, and the corner with the highest coordinates, denoted asRmax. The
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Algorithm 7 : The BOUNDSENCLOSEBALL subroutine returnstrue if and only if hyperrect-
angleR completely engulfs hypersphere centered atz of radiusr. The precondition is that
z ∈ R.

Input : HyperrectangleR ∈ R
K×2, pointz ∈ R

K , radiusr ∈ R+.
Output : Boolean indicating whether the hypersphere of radiusr centered inz is completely

enclosed inside the hyperrectangleR.
for i = 1 .. K do1

if D
(

di

(

z[i], R
min
[i]

))

≤ r then2

return false;3

end4

if D
(

di

(

z[i], R
max
[i]

))

≤ r then5

return false;6

end7

end8

return true ;9

comparisons are non-strict, i.e. a hypersphere tangent to a face of the hyperrectangle is conserva-
tively assumed to not be enclosed. This is because there might be points right at the intersection that
belong to a different branch of the kd-tree.

Whenever it is computationally more advantageous to work with the inverse ofD, inequalities

may be expressed and computed in terms ofD−1, for exampledi

(

z[i], R
min
[i]

)

≤ D−1(r).

Theorem 5.6.1(Friedman et al. [85]). BOUNDSENCLOSEBALL is correct under the assumptions
in Eqs. 5.31–5.39.

Proof. Assume that the function BOUNDSENCLOSEBALL returnstrue but there is still a pointz∗

inside of the hypersphere but outside the bounds:

K∑

i=1

di

(

z[i], z
∗
[i]

)

≤ D−1 (r) (5.40)

By definition ofR, z
∗ is outside of it if for at least one dimensionj, z

∗
[j] ≤ Rmin

[j] or Rmax
[j] ≤

z
∗
[j]. Given (by the precondition) thatRmin

[j] ≤ z[j] ≤ Rmax
[j] , by Eq. 5.37, either (respective to

the two cases)dj

(
z[j], (z

∗)[j]
)
≥ dj

(

z[j], R
min
[j]

)

, or dj

(

z[j], z
∗
[j]

)

≥ dj

(

z[j], R
max
[j]

)

. Given that

BOUNDSENCLOSEBALL returnstrue, dj

(

z[j], R
min
[j]

)

> D−1(r) anddj

(

z[j], R
max
[j]

)

> D−1(r).

Sodj

(
z[j], (z

∗)[j]
)

> D−1(r), which impliesd (z, z∗) > D−1(r) (as sum of nonnegative terms per
Eq. 5.38), contradicting the hypothesis.

Conversely, assume BOUNDSENCLOSEBALL returnsfalse. Therefore there is at least one di-

mensionj satisfyingdj

(

z[j], R
min
[j]

)

≤ D−1(r). (The other case involvingRmax
[j] is similarly han-

dled.) Let us choose the pointz
∗ with the same coordinates asz except in dimensionj where the
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coordinate isz′[j] = Rmin
[j] . That point is on the surface ofR so it is not enclosed inside of it. The

distance betweenz andz
∗ has all terms equal to zero (Eq. 5.38) except in dimensionj, leading to

the valued(z, z∗) = D
(

di0

(

z[j], (z
∗)[j]

))

≤ r. So the pointz∗ is in the ball but not enclosed in

the hyperrectangle.

BOUNDSOVERLAP BALL The subroutine BOUNDSOVERLAPBALL (Algorithm 8) is only slight-
ly more complicated than BOUNDSENCLOSEBALL . It returnstrue if and only if there is some
non-empty intersection between the hyperrectangleR and the hypersphere centered atz of radiusr.
(The original definition [85] returns the complement, i.e.true if there is no intersection.) In spite
of the fact that the intersection itself may have a complicated shape, getting the yes/no answer is
simple. The point on the surface ofR closest to the sphere is calculated. That point may be a corner,
an edge, or a face of the hyperrectangle. Regardless of the placement,each coordinate of that point
is easy to compute on a by-case basis. Note that although the closest point iscomputed using simple
inequalities, the actual distance to it is computed using the accurated function. Comparing that
distance against the sphere’s radius yields the final result. This functionmakes the same assumptions
aboutd as BOUNDSENCLOSEBALL .

Algorithm 8 : BOUNDSOVERLAPBALL returnstrue if and only if there exists a non-empty
intersection between the hyperrectangleR and the hypersphere centered atz of radiusr.

Input : HyperrectangleR ∈ R
K×2, pointz ∈ R

K , radiusr ∈ R+.
Output : Boolean indicating whether the hypersphere of radiusr centered inz intersects the

hyperrectangleR.
s← 0;1

for i = 1 .. K do2

if z[i] < Rmin
[i] then3

s← s + di(z[i], R
min
[i] );4

else ifz[i] > Rmax
[i] then5

s← s + di(z[i], R
max
[i] );6

else7

continue;8

end9

if s ≥ D−1(r) then10

return false;11

end12

end13

return true ;14

Theorem 5.6.2(Friedman et al. [85]). BOUNDSOVERLAPBALL is correct under the assumptions
in Eqs. 5.31–5.39.

Proof. The proof relies on showing that the point implicitly chosen in the loop during thecomputa-
tion of s is the closest toz on the surface ofR. If there was any closer point, it would have to have
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at least one of the component distances smaller than that chosen in the loop (by monotonicity ofdi

in all dimensions). But BOUNDSOVERLAPBALL already chooses the extremum of each coordinate
that is closest toz, so by Eq. 5.37 that choice also minimizesdi in each dimension.

5.6.2.4 Adapting kd-tree Search to Jensen-Shannon Space

Interestingly, although kd-trees are almost always used with distancesd derived from a norm (by
definingd(x, x′) = ‖x− x′‖), the restrictions in Eqs. 5.35–5.39 do not required to be norm-based,
which is relieving because Jensen-Shannon divergence cannot be easily expressed as the norm of a
difference.3 The reader interested in the norm associated withdJS is encouraged to peruse Topsøe’s
work [217], which shows that a norm does exist fordJS but does not have an analytic form. For our
purposes, we only need to prove thatdJS is also suitable for use with kd-trees, for which reason we
will prove the following theorem.

Theorem 5.6.3.The functionf : [0, 1]× [0, 1]→ R

f(x, x′) = x log
2x

x + x′
+ x′ log

2x′

x + x′
(5.41)

is symmetric and has a partial applicationf |x′=x0 with exactly one local minimum inx = x0 equal
to zero.

Proof. Symmetry is immediate by renamingx to x′ and vice versa; we obtain the same function.
To find minima of the partial applicationf |x′=x0 , let us take its first derivative:

(f |x′=x0)
′ = log

2x

x + x0
+ x · x + x0

2x
· 2(x + x0)− 2x

(x + x0)2
− x0 ·

x + x0

2x0
· 2x0

(x + x0)2
(5.42)

= log
2x

x + x0
(5.43)

The fraction
2x

x + x0
is positive and monotonically increasing on[0, 1] and therefore(f |x′=x0)

′

is also monotonically increasing. The point at which(f |x′=x0)
′ intersects they = 0 axis is where

2x

x + x0
= 1 ⇒ x = x0. At that point the function reaches its only local extremum. It is trivial

to verify that the extremum is a minimum with valuef |x′=x0(x0) = 0, so the function is also
nonnegative, which concludes the proof.

The connection between Theorem 5.6.3 and our goal is that the functionf described therein is
one term of the Jensen-Shannon divergence functiondJS. FordJS, D is simply scaling the sum of

the components by
1

2
: D(x) =

x

2
. Theorem 5.6.3 proves that we can usedJS directly with kd-trees

and achieve correct results.

3However, this means we are foregoing some optimization opportunities, such the aforementioned incremental dis-
tance calculation [9].
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5.7 Scalable Hyperparameter Tuning for the Gaussian Kernel

The data-driven method discussed in Chapter 3 defines distances on the outputs of a first-pass clas-
sifier. The resulting feature space consists of probability distributions over the desired classes,
and probability divergence measures with well-understood statistical properties can thus be used
as distance measures. Our experiments use a neural network with softmax output, trained on the
original MFCC features, as the first-pass classifier, and Jensen-Shannon divergence as a distance
measure.

The distancedJS is converted to a similarity measure by using a Gaussian kernel of parameter-
ized width (Eq. 2.1):

wij = exp

[

−dJS(xi, xj)
2

α2

]

(5.44)

The quality of the similarity hinges on finding a good value for the hyperparameterα. Choosing
the optimalα is an open research question; several heuristic methods have been used in practice.
Zhu [238] optimizesα to yield a labeling of minimum entropy, subject to the constraint that the
labeling must respect the labels of the training set, and also discusses a heuristics based on the Min-

imum Spanning Tree (MST). The MST-based method entails choosingα =
d0

3
, whered0 is the

smallest distance between two labeled points bearing different labels. This method is extremely
sensitive to noise, as one or one pair of outlying samples is enough to influence the choice ofα
decisively. Optimizingα for minimum entropy is more robust, but carrying the optimization (by
e.g. gradient descent) for each utterance would add considerable overhead to the classification time.

Corpora with only low amounts of labeled data (t≪ u) make the issue of effective hyperparam-
eter training particularly difficult because there is little or no development datato tune parameters
against. We propose an efficient and scalable method of calibratingα that works offline (only uses
the training data) and is inspired by maximum margin techniques. As such, our method enjoys the
usual properties of maximum-margin techniques such as robustness to noiseand good separation
capabilities.

First, we compute the average intra-class distance (dintra) and inter-class distance (dinter):

dintra =

∑

i,j: i6=j,yi=yj

d(xi, xj)

card
{
{i, j} ∈ {1, . . . , t}2

∣
∣ i 6= j, yi = yj

} (5.45)

dinter =

∑

i,j: yi 6=yj

d(xi, xj)

card
{
{i, j} ∈ {1, . . . , t}2

∣
∣ yi 6= yj

} (5.46)

whereNintra andNinter are the counts of the respective terms. Ideally,dintra > dinter by a large
margin, otherwise the data has poor separability. In fact, comparingdintra anddinter gives a good
gauge of the quality of the feature selection and distance measure. We then chooseα such that two

samples distanced at
dinter + dintra

2
have a similarity of 0.5:

exp

[

−(dintra + dinter)
2

4α2

]

=
1

2
⇒ α =

dintra + dinter

2
√

ln 2
(5.47)



104

The intuition behind this choice is that, given that both distance and similarity haverange[0, 1], two
samples placed at the most ambiguous distance should be midway in terms of similarityas well.

Computing the average distancesdintra anddinter would necessitateO(t2) distance computations,
one for each pair of training samples. A time-efficient approach we choose in practice is to do a
random sampling: two samplesxi andxj are randomly chosen from the training set, their distance
is computed and considered fordintra, if yi = yj , or fordinter otherwise. We used 2.5% of the data in
five successive trials;α varied by no more than 1% among trials. This is encouraging in scenarios
where (t≫ u).

Choosingα in this manner yielded much better performance in our tests than grid search and a
method based on the Minimum Spanning Tree [238, § 7.3].

5.8 Speed Measurements for Unstructured Classification

We have measured the run time of the Vocal Joystick experiment enhanced with kd-trees for nearest
neighbors estimation, graph reduction, and in-place label propagation. The moderate corpus size
allowed us to run, for comparison purposes, the brute-force nearestneighbors algorithm for graph
construction and also the classic iterative label propagation (Algorithm 1).(We were unable to con-
struct the full graph in memory so there is no comparison point for full graph versus reduced graph
memory consumption; this is admittedly an obvious point that needs no experimental evidence.)
We then measured the run time of the proposed approach using kd-trees for accelerating nearest
neighbors search, and our in-place label propagation (Algorithm 1).

In both brute-force and kd-tree experiments, one graph was built for each test utterance (in
keeping with the approach to measuring accuracy). Therefore two nearest-neighbor searches must
be performed. First, the training set must be searched for each sample in the current utterance (for
the labeled-unlabeled connections formingPUL). Second, the samples in the current utterance must
be also cross-searched (for the labeled-unlabeled connections forming PUU). Again in both cases,
we observed the common practice of keeping the list of current nearest neighbor candidates in a
binary heap [52] in order to not let the size of the list add to the complexity. The number of nearest
neighbors retained wask = 10.

In the brute-force experiments, we computed the nearest neighbors by linear search against both
sets. In the kd-tree experiments, we first built one kd-tree for the entire training set. The tree was
then reused across all test utterances. Then, for each test utterance, we built a separate kd-tree. This
second tree is needed to compute the unlabeled-to-unlabeled connections.

The same systems-level optimizations have been applied to both implementations. The system
accuracy has been the same in both cases, although the individual soft labels have been slightly
different on occasion due to different order in which floating point operations have been carried.

We conducted five timing experiments, one at a time, on the same machine and computed aver-
age and standard deviation in each case. The computer used was an AMD64 machine with 2 GHz
clock speed and 8 GB RAM. All data was stored on a local disk. The resultsshown in Table 5.1
reveal two facts. First, kd-trees bring over two orders of magnitude improvement (127×) in terms
of speed. Second, the classification time is dominated by graph construction;although our proposed
in-place label propagation is significantly faster than the state-of-the-artalternative, there is little
improvement in total runtime.

The in-place label propagation was faster because it converged faster than classic iterative la-
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Step Run time (seconds)

Graph construction (brute force nearest neighbors)24703.07± 414.56
Graph construction (kd-trees) 193.77± 0.57

Label propagation iterative per [238] 6.45± 1.72
Label propagation in-place proposed in § 5.3.1 2.59± 0.41

Table 5.1: Run time for brute force graph construction and original label propagation vs. kd-trees
and in-place label propagation. Graph construction is improved by two orders of magnitude. Con-
vergence speed is also largely improved, but has a relatively small contribution to the overall run
time.

bel propagation. Over the 49 graphs constructed for the dev set, classic iterative label propaga-
tion [238] took on average 21.45 steps to converge. The proposed in-place label propagation took
on average 8.86 steps to converge. The complexity of each approach is the same. The absolute
improvements in runtime depend on the density of the graphs.

5.9 Fast Graph Construction in String Spaces

Chapter 4 discusses graph-based learning using string kernels. Let us discuss scalability consid-
erations when string kernels are used as a similarity measure. The costliest operation involved in
creating the graph is computing the similaritiesσ( 〈〈xi, yi〉〉 , 〈〈xj , yj〉〉 ) for all pairs of pairs (sic)
〈〈xi, yi〉〉 , 〈〈xj , yj〉〉 in the test set. Recall that for structured learning with string kernels we usea
hypothesis-based approach that relies on an external generator to create several hypotheses for each
unlabeled sample, so the semi-supervised (sub)system needs to regressa scoring function for pairs
〈〈xi, yi〉〉 . On the source side (x), the total number of kernel computations is (after eliminating all
unnecessary computationsκ(xi, xi) and taking the symmetryκ(xi, xj) = κ(xj , xi) into account):

Cx = u · tu(u− 1)

2
(5.48)

This scales poorly withu so we need to improve on that, particularly when we consider that
each kernel evaluation takesO(|xi| · |xj |) time (in a dynamic programming implementation). Fur-
thermore, on the target side (y), the total number of kernel evaluations in a naı̈ve/greedy approach
is

Cy =

(
u∑

i=1

cardY(xi)

)[(
u∑

i=1

cardY(xi)

)

− 1

]

2
(5.49)

because there is one kernel evaluation for each pair of hypotheses, and there are
u∑

i=1

cardY(xi) total

hypotheses.
In the following we will focus on the general problem of computing all similaritiesbetween two

sets of strings.
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5.9.1 Inverted Index

Given that kernel evaluations against pairs of strings is relatively expensive, there is a strong motiva-
tion for finding fast, inexpensive approximations of the real value. This technique is akin to finding
the nearest neighbors when constructing the graph: instead of operating on a very connected graph,
we approximate it by only keeping the strongest edges. A good approximation of the string ker-
nel would eliminate highly dissimilar string pairs, which form the bulk, and keep the most similar
strings. Ideally the approximation method would have good recall such that no significantly similar
pairs are lost. The precision influences speed because a low precision forces many unneeded or
low-yield kernel evaluations.

One widely known data structure for approximating string similarities is known asinverted
index. The inverted index (also called inverted file by Knuth [123, Vol. 3, § 6.5] or postings file)
is a data structure dating to way before the beginnings of automated computing.Book indexes are
some of the earliest examples of systematic creation and use of inverted indexes. Inverted indexes
have been a mainstay in computing and have seen a revived interest with the advent of data mining,
information extraction, and Internet-scale search engines.

An inverted index [25] is a general structure applicable to generic strings(“string” as defined
in § 4.4.5, Definition 4.4.1). We formally define an inverted index below.

Definition 5.9.1. Given a collection of stringsS = 〈〈s1, . . . , sn〉〉 over an alphabetΣ, an inverted
indexis an associative arrayI that associates each elementw ∈ Σ to the set

I(w) =
{
si ∈ S | ∃j ∈ {1, . . . , |si|}, w = (si)[j]

}
(5.50)

that mapsw to the subset of strings in whichw occurs. An elementI(w) of I is called aninverted
list.

In our application to Machine Translation and similar structured problems, a string si is a sen-
tence and the collectionS is a document (e.g. a training set). If a balanced tree is used as an
intermediate data structure, building an inverted index involves scanningS sequentially and ap-
pending for each sentencesi a sentence identifier (e.g. the sentence numberi) to the node of the tree
corresponding to each word insi. That meansO(|si| log Σ) time for sentencesi. The total time for

constructing an inverted index forS is thereforeO
((

∑

s∈S

|s|
)

log Σ

)

, which is satisfactory even

using a straightforward algorithm. Sorting the obtained string list for each word is useful and adds

O
((

∑

s∈S

|s|
)

log

(

max
s∈S
|s|
))

time. Finding all potentially similar sentences given the inverted

index is, however, a nontrivial algorithm, for which reason we discuss itin detail. (However, we
don’t consider it original to this work as similar and more involved techniquesare to be found in the
literature [241].)

5.9.1.1 Normalization by String Length

If the number of words in common is used as approximation for string similarity, then long training
strings would be at an unfair advantage: long strings contain many words,and therefore they will
appear similar to many short strings. We have already met a similar problem when discussing string
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kernels (§ 4.3.1.1) where it was revealed that normalization is needed to obtain unbiased kernels.
Therefore we define an approximated similarity for strings by normalizing by the geometric mean
of the number of words in the strings, as follows.

Definition 5.9.2. Given two non-empty stringss andt and denoting withW (s) , {w ∈ Σ | ∃i ∈
{1, . . . , |s|}, w = si} and W (t) , {w ∈ Σ | ∃i ∈ {1, . . . , |t|}, w = ti} the sets of (distinct)
elements ins and respectivelyt, we define the normalized bag-of-words similarity ofs andt as:

σb(s, t) =
card(W (s) ∩W (t))

√

card(W (s)) · card(W (t))
(5.51)

Similarity σb is bounded within[0, 1] and can be considered an approximation of all normalized
string kernels discussed in § 4.3.1.3. This is because those kernels rely oncommon words and also
on the relative ordering of words;σb does measure word commonality, but ignores their ordering.
As such,σb may return higher similarities than the actual kernels, but also lower similarities because
it does not account for repeated words.

The plan is to devise a fast approximate method for finding the most similar stringswith high
likelihood with a relatively small computational effort. After this step, the precise kernel computes
the actual similarities starting from the trimmed candidate list.

5.9.1.2 Algorithm for Approximating Most Similar Strings using an Inverted Index

Given some strings and an inverted indexI, our aim is to quickly find the strings that contain the
most words in common withs. This will not yield a precise ranking of the most similar strings
according to the kernel because it only focuses on 1-grams and ignoresword order and hence all
higher-ordern-grams. However, it does provide a reasonable approximation to any string kernel.
Algorithm 9 shows how the most similar strings can be efficiently found in a numeric inverted index.

The algorithm first selects a subsetC of the index corresponding to the words contained in the
string, ignoring all the rest (section starting at line 2). This step takesO(|s|) time and is where
most computational savings will occur, assuming|s| is small relative to|Σ|. After this step,C is
systematically and exclusively used for counting the number of common strings.

The algorithm makes use of two binary heaps [123, Vol. 3, § 5.2]. The first heap,HR, is a
min-heap of pairs〈〈m, k〉〉 containing string IDs and the number of common words they share
with the query strings. The binary min-heap is ordered by projection of its pairs on the second
member (k, the occurrence count; the string ID is irrelevant to ordering). Therefore, searching the
heap for the stringleast similarto s is done inO(1) time. Inserting a new string in the heap takes
O(log |HR|) = O(log n) time.

The second binary min-heap,HC , is a less usual construct. It organizes arrays of inverted lists,
and as such care must be exercised when reading Algorithm 9 so as to notconfuse elements of this
heap with elements of each inverted list stored in the heap. For example,top(HC) is the top of the
heap (consisting of one entire list of string IDs), whereas(top(HC))[1] is the leftmost string ID in
the list at the top of the heap. The unusual element is the ordering induced by the heap: two heap
elements (i.e., two inverted lists)a andb found inHC are ordered by the relation:

frontOrder(a, b) , a[1] < b[1] (5.52)
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Algorithm 9 : Finding the strings sharing most words with a given string in an inverted index.
Input : Strings without repeated words; inverted indexI, eachI(w) is a sorted array of numeric string

identifiers;n, the limit for the most similar strings.
Output : The topn strings containing the most words in common withs.
/ * Create the searched subset of I * /
C ← ∅;22
for w ∈ s do3

if I(w) 6= ∅ then C ← C I(w)4
end5
/ * Search C transversally maintaining the result heap * /
HR ← makeEmptyHeap();6
HC ← makeFrontHeap(C);7
while |HC | > 0 do8

/ * Select minimum m and its count k off index’s head * /
m← (top(HC))1;9
k ← 0;10
repeat11

k ← k + 1;12
top(HC)← (top(HC))[2..|top(HC)|];13

if |top(HC)| = 0 then14
pop(HC);1616

else17
percolateDown(HC);1919

end20

until |HC | = 0 ∨ (top(HC))[1] 6= m ;21

if length(HR) < n then2323
push(HR, 〈〈m, k〉〉 );24

else iftop(HR).k < k then25
replaceTop(HR, 〈〈m, k〉〉 );2727

end28
if |HC | ≤ top(HR).k ∨ top(HR).k = |s| then29

break while;30

end31

end32
return HR;33

In other words,HC orders inverted lists by the ID of the first string. Given that the inverted lists
are sorted in ascending order by string ID,HC introduces ordering by theglobally smallest string ID
present in the index. This means thatHC offersO(1) access to the lowest string ID in the entire
setC. As items are removed from the heap (andC), heap maintenance preserves this property
in only O(log |HC |) time. That is not the cumulated length of all lists, but instead the relatively
small number of inverted lists.|HC | is initially equal to|s| (the length of the sought string) and
decreases as elements are removed fromHC . Also note that swapping elements inHC does not
entail swapping entire inverted lists, but instead swapping indirect pointersto the lists. As such,
swapping two elements ofHC isO(1) and therefore operations onHC obey the usual complexity
bounds.

The outerwhile loop counts, in each pass, the total number of words shared bys and the indexed
string with the globally smallest ID found inC. The approach is to repeatedly eliminate the first ID
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Primitive Complexity Comments

makeFrontHeap(C) O(|C|) Organizes elements inC as a heap using Eq. 5.52 as the order-
ing relation. No additional storage is necessary;C is organized
in situ by swapping its elements in-place. Empty lists inC are
not put in the heap.

|H| O(1) Number of elements in heapH.
top(H) O(1) Returns the element at the top of heapH. (Usually that ele-

ment is stored at the first position in the array underlying the
heap.)

pop(H) O(log |H|) Removes the top of heapH while preserving the heap prop-
erty.

percolateDown(H) O(log |H|) Assuming the top of the heap has mutated, re-establishes
the heap property by swapping that element appropriately.
Rönngren and Ayani [192] argue that the practical average in-
sertion time isO(1).

replaceTop(H, e) O(log |H|) Replaces the top of the heap withe and then re-establishes
the heap property. Technically not a primitive: evaluates
replaceTop(H)← e followed bypercolateDown(H).

Table 5.2: Heap primitives used by Algorithm 9. General texts on algorithms and data struc-
tures [123, 52] cover implementation of heap primitives in detail.

in the top string in heapHC . After each such operation, the inverted list might have become empty
(in which case it is removed off the list, line 16) or it still contains elements, in which case the heap
property must be preserved (line 19). The count of successful ID extraction operations (i.e., passes
through therepeat loop) is exactly the number of (distinct) words that query strings and stringm
have in common.

Lines 23 through 27 perform the insertion in the result heap. In a manner common to top-n
algorithms, insertion is done with “saturation:” we are only interested in the topn matches so if
|HR| = n and a match was found better than the worst match seen so far, we just replace that worst
match with the found one. Recall thatHR is a min-heap of which top is the string having thefewest
words in common withs.

Complexity Analysis The innermostrepeat loop makes one step for each training string that has
at least one word in common with the test string. Due to the heap management, thatstep takes
log |HC | time. In turn,|HC | decreases as elements are consumed offHC , but in the worst case it is
no greater than|s|. So each pass through therepeat loop takeslog |s| time.

Adding (or replacing) one element inHR takesO(n) time, but is only done on average once
everyk steps, wherek is the average number of words thats has with a string inC. In the worst
case, we have many train strings each sharing only one word withs.4 So in the worst case at each

4Due to the wayC was created, any string in it has at least one word in common withs.
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pass through the outer loop we are takingO(log(n · |s|)) time.
The outer loop ceases whenC has been exhausted entirely, which totals as many steps as accu-

mulated occurrences inC of words ins:

T = O
(

log(n · |s|)
∑

w∈s

count(w)

)

(5.53)

where thecountfunction is the number of occurrences of wordw in the inverted index.
This is the worst case complexity. The worst case situation occurs when each training string

has exactly one word in common with the test string, and whenC contains a large fraction of the
corpus, i.e.s is a long string containing many distinct words. In practice this seldom happens, but
at any rate any skewing would affect thelog(n · |s|) factor, which is small to begin with.

Scalability Considerations Algorithm 9 is scalable to large systems because in addition to its
good theoretical complexity it also enjoys a number of properties relevant for practical implementa-
tions. The inverted lists are scanned strictly sequentially and only their current element needs to be
in memory in order to be organized in heapHC . The inverted index is therefore friendly to external
storage. Cache locality is not very good, however, because the lists arespanned in lockstep, there-
fore a long searched sentence could fill the cache lines such that memory thrashing will occur. In the
worst case, the sentence IDs are distributed evenly across the invertedlists; a more cache-favorable
case is to have long running sequences of IDs that belong to a minority of lists.

NLP-Specific Complexity Considerations In NLP applications, usually the sought string is a
sentence and the inverted index maps words (or word tags) to sentences or documents in which the
word (or tag) occurs. The larger factor is the occurrence count of the searched string’s elements
in the training set. If the distribution of vocabulary elements in the corpus wereapproximately
uniform, the count would be proportional to|s| and to the number of strings in the corpus. However,
words in natural language sentences are Zipf-distributed [240, 130, 143] (the frequency of a word
is roughly double the frequency of the next less-frequent word). The distribution is skewed towards
the extremes, i.e. the most few frequent words decay slower and the leastfrequent word frequencies
decay faster [137]. If we assume that the Zipf distribution applies to individual strings as well,
then longer test sentences have an exponentially decreasing overlap withtraining strings because
they contain less and less frequent distinct words. So we can practically consider that

∑

w∈s

count(w)

depends on the size of the training data but not on the length ofs.
Following the Zipf law, the inverted index itself is very jagged (the number of elements in the

inverted lists drops exponentially). The most frequent word is “the,” occurring in 6.2%-7% of all
sentences [137, List 1.2]. The frequency decays to under 1% by the eighth ranked word (“is”). This
means that after stop word elimination, Algorithm 9 can perform approximate similarity searches
based on an inverted index by only accessing less that 1% of the training set sentences.

5.9.1.3 Loss of Inverted Index Compared to the Gapped String Kernel

In using an inverted index for approximating the most similar sentences (where the desired exact
similarity would be computed by a gapped string kernel), there are two sources of inaccuracy:
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• Word Repetition:In the inverted index, at least as implemented herein, repeated occurrences
of the same word within a sentence are not recorded; the index only tells whether a word
occurs in a sentence at least once. Stop words appear repeatedly in sentences more often
than meaningful words, so stop word elimination should limit this source of noise. Another
useful technique for reducing the effect of word repetition is to use sentence segmentation by
breaking compound and complex sentences into simple sentences.

• Word Order: The inverted index does not retain an important source of information—the
order of words in the original sentence. For example, the sentences “work smart not hard”
and “work hard not smart” are put in the same equivalence class by the inverted index.

If the inverted index is used as a pre-filter to limit computation of the expensivekernel to only
the topn estimated similar sentences and ignoring all others, the filtering effected by theinverted
index may lose some of the most similar sentences (according to the real, expensive-to-compute
kernel) and introduces others, not as similar, sentences in the top-n list. We want to estimate the
loss introduced, which we will do in two ways:

1. By counts: For each test sentencesi, determine the topn similar sentencesUi =
〈〈uii , . . . , uin〉〉 by using the actual similarity measure we are interested in, and the topn
similar sentencesU ′

i = 〈〈u′
i1 , . . . , u

′
in〉〉 by using the inverted index. Then the loss is com-

puted as the average relative disagreement of the two sets:

Lc(n) =

u∑

i=1

[

1− card(Ui ∩ U ′
i)

card(Ui)

]

u
(5.54)

as a value in[0, 1].

2. By accumulated similarity:Another approach to loss measurement takes into account the
fact that even the sentences mistakenly considered in topn (according to the inverted index)
are not uniformly undesirable because some may be in fact close in similarity. To make that
distinction, we compare the accumulated similarity of the topn matches as guessed by the
inverted index, with the accumulated similarity of the true topn matches according to the
string kernel:

Ls(n) =

u∑

i=1










1−

n∑

j=1

σb(u
′
ij , xi)

n∑

j=1

σb(uij , xi)










u
(5.55)

Again, the loss is in[0, 1]; in the case of a perfect match, there is no loss as the top approx-
imate similarities are the same as the true similarities so the fraction in the enumerator is
always 1. This measure is more informative thanLc because it directly reflects the loss of
good connections in the graph that is ultimately built using these most similar sentences.
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One simple technique that can be used to reduce the loss when using an inverted index is to
over-allocatethe inverted index results, i.e., having the inverted index method select the topno > n
estimates, i.e. more than the topn estimated similar sentences. After that step, the precise method
inspects those estimates and retains the true topn similar samples found. For example, the inverted
index select the top 100 most similar sentences, and then the precise similarity measure is computed
for those and only the top 10 are retained. The speed of the approach degrades to a controlled degree,
but the gain in precision may be justified. We want to measure to what extent over-allocation helps.

We have measured the loss of using an inverted index to find the most similar sentences out of
the Europarl [124] training data for each sentence in the IWSLT 2006 [127] development set. The
original set was passed through a statistical chunker to split sentences into smaller chunks, resulting
in a total of 3902 chunks. We built an inverted index built from Europarl’straining data. After
sentence chunking, the train set size was 1,478,564 chunks (which we can consider sentences for
practical purposes and we will call them as such). The size of the vocabulary is 72,480 words. The
lengths of the sentences varied between 1 and 40 words, with an averagelength of 12.6 words.

The reference used was the gapped string kernel in § 4.3.1.3 with penaltyλ = 0.5. Because
computing the actual top similarities for the entire corpus would have been prohibitively expensive,
we approximated the loss on 5 uniform random subsamples of the development set, each totaling 100
samples (about 2.56% of the test set size), and then took the average andstandard deviation.

The first experiment computedLc(n) andLs(n) for various values ofn. Table 5.3 displays the
results.

n Count lossLc(n) (%) Similarity lossLs(n) (%)

10 66.46±3.01 13.13±2.39
20 65.68±3.23 12.78±2.51
30 65.84±3.97 12.84±2.75
40 65.90±3.31 12.79±2.67
50 65.72±2.42 12.68±2.46

Table 5.3: Loss in the inverted index depending on the cutoff for most similar sentences. The frac-
tional numbersLc(n) (Eq. 5.54) andLs(n) (Eq. 5.55) are multiplied by 100 to obtain percentages.

The count loss is high for the entire measured range of values ofn. On average, there was less
than 35% agreement between then most similar sentences as predicted by the inverted index and
the reference string kernel. However, the similarity loss was relatively low,indicating that even
when the inverted index did not find the most similar sentences, it did find sentences in the same
neighborhood.

The second experiment measured the effect of over-allocation. We kept n = 10 and variedno

between 20 and 1280, in geometric progression. Table 5.4 displays the results.
The count lossLc and especially the similarity lossLs are seeing a dramatic improvement with

growth ofno. Note that values ofno that are relatively large compared ton are not degrading speed
significantly. This is becauseno compares againstt = 1, 478, 564, the size of the training corpus.
Even atno = 1280, less than one thousandth of kernel evaluations are performed compared to the
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no Count lossLc(n) (%) Similarity lossLs(n) (%)

20 58.04±2.96 7.45±1.37
40 49.00±3.10 4.62±0.80
80 40.54±2.53 2.86±0.46

160 31.88±1.93 1.84±0.30
320 26.10±1.57 1.27±0.22
640 19.50±1.31 0.75±0.25

1280 14.22±1.73 0.47±0.18

Table 5.4: Dependency of loss on over-allocation. Out ofno samples selected by using the inverted
index, the topn = 10 have been retained using the string kernel.

brute force method.

5.9.2 Fast Cross-Product String Kernel Computation

In our application of graph-based learning for Statistical Machine Translation (Chapter 4), even
after counting in the benefits of the pre-filtering done by the inverted index,computing the simi-
larities between two hypothesis sets remains a time-consuming step. Recall fromDefinition 5.5.1
(last construction step) that once two hypothesis sets have been decidedto be similar on the source
language side, all cross-product similarities between sentences in the two sets must be computed on
the target language side. The maximum size of a hypothesis set can be controlled, but that means
the search spaceY(X ) is truncated, which negatively impacts rescoring. Contemporary Statisti-
cal Machine Translation systems use hypothesis sets on the order of103, so computing similarities
across two hypothesis sets entails106 kernel evaluations. We set out to improve on that number.
One key observation is that hypotheses in any given set are remarkablysimilar with one another,
often differing only by one word or by the order of words.

We formulate the problem as follows: given two sets of stringsS = {s1, . . . , s|S|} and
T = {t1, . . . , t|T |}, compute all kernel valuesκ(si, tj) ∀i ∈ {1, . . . , |S|}, j ∈ {1, . . . , |T |}. We
are ultimately interested in the normalized kernel valuesκ̂(si, tj) (§ 4.3.1.1), but computing the
normalization factorsκ(si, si) andκ(tj , tj) is a linearO(|S| + |T |) process that can be made part
of preprocessing. The bulk of kernel computations is computing kernel values for the Cartesian
productS × T . The kernel function of interest may be then-length gap-weighted string kernel or
the all-lengths gap-weighted string kernel, both described in § 4.3.1.3. We will start with the latter
as it is easier to discuss and implement; the former follows a similar pattern.

Yin et al. [230] proposed a dynamic programming algorithm to compute the all-lengths gap-
weighted string kernel for two stringss andt in timeO(|s| · |t|). We are interested in discussing the
actual procedure, so Algorithm 10 (next page) shows it as originally proposed.

The algorithm maintains two bi-dimensional matricesDPS ,DPV ∈ R
|s|×|t|
+ and computes

their elements at indices(i, j) from elements at smaller indices, in a classic dynamic programming
manner. Before introducing an algorithm for computing kernels over multiple strings, let us notice
one fact of interest: The valueDPS (i, j) is computed in the inner loop and used immediately;



114

Algorithm 10 : All-lengths gap-weighted kernel as proposed by Yin et al. [230]
Input : Stringss, t; gap penaltyλ ∈ R.
Output : All-lengths gap-weighted similarityK ∈ R

DPS (1 : |s|, 1 : |t|) = 0;1

DPV (0, 0 : |t|) = 0;2

DPV (1 : |s|, 0) = 0;3

K = 0;4

for i = 1 : |s| do5

for j = 1 : |t| do6

if si = tj then7

DPS (i, j)← 1 + DPV (i− 1, j − 1);8

K ← K + DPS (i, j);9

end10

DPV (i, j)← DPS (i, j)+λDPV (i, j−1)+λDPV (i−1, j)−λ2DPV (i−1, j−1);11

end12

end13

return K;14

past values ofDPS are never used. We could eliminateDPS entirely, but let us only modify the
algorithm slightly to store a more useful matrixDPSS defined as

DPSS (i, j) ,

j
∑

k=1

DPS (i, k) (5.56)

SoDPSS stores partial sums of columns inDPS . Algorithm 11 (next page) shows the modified
algorithm definition. We replaced the matrixDPS with one transitory valueDPSij , and introduced
theDPSS matrix.

In the modified algorithm, the update ofK has been hoisted out of the inner loop to the outer
loop. This modification does not have optimization consequences, as the inner loop does the same
amount of work by updating theDPSS matrix. The more important effect obtained is that now
the matrixDPSS enjoys a useful property (along withDPV ). If strings s, s′ share a prefix of
lengthls and stringst, t′ share a prefix of lengthlt, then let us denote the matrices resulting after
the kernel values have been computed for(s, t) and (s′, t′) respectively as(DPV ,DPSS ) and
(DPV ′,DPSS ′). Then

DPV (0 : ls, 0 : lt) = DPV ′(0 : ls, 0 : lt) (5.57)

DPSS (1 : ls, 1 : lt) = DPSS ′(1 : ls, 1 : lt) (5.58)

In other words, the matrices share a rectangular region in the top-left corner. The width of the
rectangular region depends on the length of the shared prefix between(t, t′), whereas its height
depends on the length of the shared prefix between(s, s′). So one simple idea to accelerate compu-
tation of all similarities between two sets of stringsS = {s1, . . . , s|S|} andT = {t1, . . . , t|T |} is to
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Algorithm 11 : Modified all-lengths gap-weighted kernel
Input : Stringss, t; gap penaltyλ ∈ R+.
Output : All-lengths gap-weighted similarityK ∈ R+

DPSS (1 : |s|, 1 : |t|) = 0;1

DPV (0, 0 : |t|) = 0;2

DPV (1 : |s|, 0) = 0;3

K = 0;4

for i = 1 : |s| do5

for j = 1 : |t| do6

if si = tj then7

DPSij ← 1 + DPV (i− 1, j − 1);8

DPSS (i, j)← DPSS (i, j) + DPSij ;9

else10

DPSij ← 0;11

end12

DPV (i, j)← DPSij + λDPV (i, j − 1) + λDPV (i− 1, j)− λ2DPV (i− 1, j − 1);13

end14

K ← K + DPSS (i, |t|);15

end16

return K;17

exploit this property by making the matricesDPSS andDPV persistent (i.e., outlasting one kernel
evaluation) and then ordering the Cartesian productS×T such that consecutive string pairs share as
long a prefix as possible. Then, for each kernel computation, only a fraction of the matricesDPV

andDPSS must be evaluated.
We could attempt to build structure over the setS × T directly. However, that set has a large

cardinality so it would be preferable to avoid operating on it directly (in all likelihood, handling
S×T would exhibit the high complexity that we wanted to avoid in the first place); a better approach
is to induce structure overS andT separately. To do so, let us make an observation derived from
Eq. 5.57: for a given stringt, two stringss ands′ sharing a prefix of lengthls will share the firstls
rows ofDPSS andDPV . To compute similarities betweens ands′ on the left hand side, andt on
the right-hand side, we do not need to compute full matrices for each kernel computation; the firstls
rows only need be computed once.

To benefit of such savings, we arrange the strings inS in a trie [123, Vol. 3, § 6.3: Digital
Searching, pp. 492] and we distribute the rows of the matricesDPSS andDPV along the nodes
of the trie. A trie (also known as retrieval tree or prefix tree) provides a compact representation
of strings with shared prefixes, which is exactly what is needed. For example, given the sentences
setS:

Mary has a praline
Mary has a candy bar
Mary has chocolate

the corresponding word-level trie is shown is shown in Fig. 5.9.2 (next page).
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Mary

has

a chocolate

candy praline

bar

Figure 5.1: Three sentences organized in a trie. The shared prefixes are collapsed together.

Consider that we organize the entire setS in a trie. Key to the proposed algorithm is that we
distribute the rows ofDPSS andDPV along the nodes of the trie: a node at depthi in the trie
stores theith row of DPSS andDPV . This is correct because those rows would have the same
value anyway due to the shared prefix. What we effectively obtained is acompact way to store
manyDPSS andDPV matrices, one for each string inS.

Consider now the setT containing only the sentence:
Mary has a little lamb

To compute similarities of that sentence withall three sentences inS, we perform any root-first
traversal of the trie (either depth-first or breadth-first). At each node we compute the entireith row
of DPSS andDPV by using the already-computed row in the parent node. The savings come
from the fact that rows for common prefixes inS only need to be computed once. Instead of filling

|t|
|S|
∑

i=1

|si| rows, onlyN · |t| rows need to be filled, whereN ≤
|S|
∑

i=1

|si| is the number of nodes in

the trie (except for the root node). Algorithm 12 (next page) computes all similarities of a sentence
against a set of sentences. We use the notationa.b to denote “propertyb associated with entitya,”
as is the case with many of today’s programming languages. Also, we avail ourselves of high-level
primitives with obvious implementation, such asbuildTrie andpreOrder .

Algorithm 12 still has a large inefficiency: it exploits common prefixes on the left-hand side, but
not on the right-hand side. Consider the right-hand side setT :

Mary has a little lamb
Mary has a tiny lamb

For each of the two strings inT , and for each noder in the trie constructed fromS, the vec-
torsr.DPSS andr.DPV are filled from scratch, even though their first three columns are identical.
We would like to also avoid repeated computation on the right-hand side. It would appear that orga-
nizing T in a trie would yield similar benefits to those obtained forS, but a simpler method that is
just as efficient is to simply sortT in lexicographic order. Lexicographical sorting is a well-studied
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Algorithm 12 : All-lengths gapped kernel of a string against a set of strings

Input : String setS = {s1, . . . , s|S|}; stringt; gap penaltyλ ∈ R+.

Output : All-lengths gap-weighted similaritiesK ∈ R
|S|
+

root = buildTrie(S);1

root .DPSS (1 : |t|) = 0;2

root .DPV (0 : |t|) = 0;3

for r ∈ preOrder(root) do4

r.DPSS (1 : |t|) = 0;5

r.DPV (0) = 0;6

for j = 1 : |t| do7

if r.key = tj then8

DPSij ← 1 + r.parent .DPV (j − 1);9

r.DPSS (i, j)← r.DPSS (i, j) + DPSij ;10

else11

DPSij ← 0;12

end13

r.DPV (i, j)←14

DPSij + λ(r.DPV (j − 1) + r.parent .DPV (j))− λ2r.parent .DPV (j − 1);
end15

r.K ← r.parent .K + r.DPSS (i, |t|);16

end17

return CollectKFromLeaves(root);18

problem with efficient algorithms. Incidentally, a good lexicographical sorting method relies on a
trie [123, Vol. 3, Ch. 5]. After sorting, consecutive strings inT will always have the longest pos-
sible common prefix. If we then use information about the common prefix of the current and last
string inT , we can only compute a fraction of the columns in ther.DPSS andr.DPV at each pass
through the trie. Algorithm DYNTRIE 13 (page 118) realizes this idea.

A few details about Algorithm 13 are worth noting. Instead of yielding a matrixKij ∈ R
|S|×|T |
+ ,

the algorithm writes the results sequentially to a tape. This is to emphasize that the output is in-
cremental and there is no need to hold the entire output in memory, which is an important detail
because otherwise the memory consumption of the algorithm would be considerably higher. Dis-
counting the tape, the actual memory requirements of the algorithm isO(N ·max

T
|t|), whereN is

the number of nodes in the trie. (The trie’s management overhead amounts to aconstant factor.)
Had the algorithm used an output matrix, that would have taken additionalO(|S| · |T |) space unless
additional measures are taken to make the matrix sparse. Using a tape for output clarifies that no
additional memory is needed beyond the trie.

5.9.3 Collecting Results

For graph construction we are interested in the strongest edges, i.e., the largest normalized similar-
ities. To efficiently collect the highest kernel values, we use a classic top-N -copy algorithm that
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Algorithm 13 : DYNTRIE: All-lengths gapped kernel of a set of strings against a set of strings
Input : String setS = {s1, . . . , s|S|}; string setT = {t1, . . . , t|T |}; gap penaltyλ ∈ R+; output tapeτ .

Output : All-lengths gap-weighted similaritiesK ∈ R
|S|×|T |
+ are written to tapeτ .

root = buildTrie(S);1
root .DPSS (1 : |t|) = 0;2
root .DPV (0 : |t|) = 0;3
t

prev = ǫ;4
for t ∈ LexicographicalSort(T ) do5

l← CommonPrefixLength(tprev
, t);6

t
prev← t;7

for r ∈ preOrder(root) do8
if l > 0 then9

r.DPSS(l + 1 : |t|) = r.DPSS(l);10
else11

r.DPSS(1 : |t|) = 0;12
r.DPV (0) = 0;13

end14
for j = l + 1 : |t| do15

if r.key = tj then16
DPSij ← 1 + r.parent .DPV (j − 1);17
r.DPSS(i, j)← r.DPSS(i, j) + DPSij ;18

else19
DPSij ← 0;20

end21

r.DPV (i, j)← DPSij + λ(r.DPV (j − 1) + r.parent .DPV (j))− λ
2
r.parent .DPV (j − 1);22

end23
r.K ← r.parent .K + r.DPSS(i, |t|);24
if r.IsLeaf then Write(τ, r.string , t, r.K);25

end26

end27

uses a binary heap [52] to efficiently store the best similarities seen so far.Algorithm 14 (page 119)
shows the heap-based algorithm that is connected to the output tapeτ of Algorithm 13.

The complexity of the top-N -copy algorithm isO(|τ |·log N), where|τ | is the length of the input
tape. The dominant operation inside the loop (assumingN ≪ |S|×|T |) is thereplaceTop operation
which takes time logarithmic inN . As discussed, the self-similaritiesκ(si, si) andκ(tj , tj) needed
for normalization are computed once and kept separately.

5.9.4 Complexity

One individual kernel evaluation against stringss andt takesO(|s| · |t|) elementary operations. A
brute force evaluation against two sets of stringsS andT therefore has time complexity:

Cbrute(S, T ) , O





|S|
∑

i=1

|T |
∑

j=1

|si| · |tj |



 = O









|S|
∑

i=1

|si|



 ·





|T |
∑

j=1

|tj |







 (5.59)
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Algorithm 14 : Obtaining the top kernel values.
Input : Input tapeτ ; Maximum values keptN ; Criterion functionBetterThan.
Output : Array of largest similaritiesh.
h← makeEmptyHeap;1

for 〈〈s, t, κ(s, t)〉〉 ∈ Read(τ) do2

κ̂← κ(s, t)
√

κ(s, s)κ(t, t)
;

3

if h.size < N then4

h.push( 〈〈s, t, κ̂〉〉 );5

else6

if betterThan( 〈〈s, t, κ̂〉〉 , top(h)) then7

replaceTop(h, 〈〈s, t, κ̂〉〉 );8

end9

end10

end11

return h;12

To calculate the complexity of DYNTRIE, let us introduce an auxiliary function:

prefixes : F(Σ∗)× N
∗ → N

∗ (5.60)

prefixes(A, n) = card ({x ∈ Σn | ∃a ∈ A, a(1 : n) = x}) (5.61)

wherea(1 : n) is the substring from 1 ton of stringa, andF(X) (also defined in Eq. 4.6) is the
finite power set of some setX:

F(X) = {A ∈ P(X) | card(A) <∞} (5.62)

Colloquially,prefixes(S, n) is the number of distinct prefixes of lengthn in string setS. When
Algorithm 13 executes, at each depthi in the trie it will computeprefixes(S, i) rows for the ma-
tricesDPSS andDPV . However, not all columns are computed every pass; the first column is
computedprefixes(T, 1) times, the second is computedp(T, 2) times, . . . , thejth column is com-
putedprefixes(T, j) times. So the number of elementary operations at depthi is

oi = prefixes(S, i)
∑

j≥1

prefixes(T, j) (5.63)

Summing over all levels we obtain the overall complexity:

CDYNTRIE(S, T ) = O








∑

i≥1

prefixes(S, i)



 ·




∑

j≥1

prefixes(T, j)







 (5.64)

It is trivially shown that the two sums are in fact equal to the number of nodesin the tries that
would be built out ofS andT (excluding the root node). This is in keeping with intuition: the
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more prefixes are shared, the more compact the tries are, and the more computation can be saved
compared to the brute force approach.

The worst-case complexity is attained when no two strings share the same prefix and is the same
as the complexity of the brute-force approach. If vocabulary size is taken into account, another
bound exists because there can be no more than|Σ|n distinct prefixes of lengthn, which limits the
sum ofprefixes in a setS to no more than|Σ|maxs∈S |s|; however, the exponential nature of that
possible bound makes it inoperative beyond very small vocabularies andvery short strings.

5.9.5 System-level Optimizations

Practical algorithm implementations must not only faithfully follow the definition of the algorithm,
but should also account for the many details that can influence speed andmemory consumption,
sometimes to a surprisingly large extent or even subverting the algorithm’s theoretical complexity.5

We implemented the all-strings gap-weighted kernel algorithm for the Cartesianproduct of two
sets (Algorithm 13) and carried timing measurements against the hypotheses sets in a real medium-
sized corpus for Machine Translation, Europarl [124]. The next section describes in detail the
experimental setup. For now, we show how various system-level optimizations influenced the final
timings of the implementation of the proposed approach in Table 5.5.

# Optimization Improvement

1 Mostly contiguous allocation of the trie nodes 6%
2 Avoid reallocation (don’t shrink, keep the largest blocks allocated so far) 27%
3 Use one vector of pairs instead of two vectors forDPV , DPSS 12%
4 Use unchecked pointers instead of indexed access in the inner loop 6%
5 Cache on the stack all indirectly-accessed values in the inner loop 5%

Total reduction in run time by 56%

Table 5.5: System-level optimizations in implementing Algorithm 13 and their influenceon the
timing results. The optimizations have been applied in the order shown, so optimizations towards the
bottom may experience a diminished effect. The percents shown are absolute run time improvements
compared to the unoptimized implementation of the same algorithm.

The improvements are highly system-dependent and we present them for informative purposes
only. It is likely that on a different system the relative participation of eachoptimization would differ.
Also, changing the order in which optimizations are applied would lead to different percentages.
For example, optimization #5 brings a 5% absolute improvement when all other optimizations are
already in effect; measuring its effect before all others may improve its measured participation level.

The section below compares the proposed algorithm against a brute-force evaluation of|S| ·
|T | kernel values. It should be noted that all of the above optimizations have also been carried

5A classic example is aO(n) loop transformed into anO(n2) one by a poor implementation of an array append
operation that is system-provided and assumed to be correct.
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in the brute-force implementation where applicable, including two others that are not available to
the trie-based version: (a) keeping only the last row ofDPV and eliminatingDPS entirely (see
Algorithm 10); and (b) swapping inputs appropriately such that the inner loop always operates on
the shorter of the two strings. Combined, these two measures lead to a memory consumption of
onlyO(min(|s|, |t|)) for the brute force algorithm.

5.9.6 Timing Measurements

To gauge the improvements brought by the proposed method, we timed the kernel computations on
hypotheses in the Europarl [124] corpus, starting from the same setup as that described in § 5.9.1.3.
We generated up to 100-best hypotheses per chunk, resulting in an average of 72.8 hypotheses for
each chunk. (Short sentences have fewer than 100 hypotheses.) Only unique (distinct) hypotheses
have been generated for each hypothesis set; duplicated hypotheses would unfairly favor the pro-
posed approach because the incremental cost of kernel evaluation for duplicated sentences is null
(which is nonetheless an important property of the DYNTRIE algorithm). All things considered,
about 20.7 million distinct kernel evaluations would need to be made if the Cartesian product of all
hypothesis pairs would be evaluated. Practical approaches would avoidsuch computation by, for
example, only computing the Cartesian product for hypotheses that are sufficiently similar on the
source side and consider the rest dissimilar. However, the savings of theDYNTRIE method have
effect for each pair of hypothesis sets, so the comparison is meaningful.

We measured the time to completion of a brute-force approach against the proposed algorithm.
Sorting the input and normalization were not considered part of the process and were not timed.
However, the time needed to build the trie was included in the timing of DYNTRIE, and collection
of the top hypotheses using Algorithm 14 (the binary heap-based top-N -copy) was considered part
of the process and was included in both timings.

The plot in Figure 5.2 (next page) reveals considerable improvements brought by the proposed
algorithm for all input sizes. Figure 5.3 (page 123) displays the improvement factor of the proposed
approach over the brute-force implementation. The improvements stay in the 3xrange and do not
degrade for large values ofN . We should note, however, that this experiment is somewhat favorable
to the trie-based approach: hypothesis sets are highly similar (albeit neveridentical) so they are
likely to share prefixes more than e.g. randomly-chosen sentences. The proposed approach would
not yield notable improvements if there is no significant prefix sharing across inputs (e.g. short
strings randomly drawn from a large alphabet.)

5.9.7 Considerations on Parallelization

The brute-force approach has an obvious path towards parallelization—simply divide either or both
sides of the computation in batches and deliver them to separate computation units. Each of these
deposits results in a synchronized queue that feeds a top-N -copy collector.

The trie-based approach is also parallelizable. A naı̈ve approach would be to exploit the prop-
erty that at any branching point in the trie, there is no data sharing below it. Therefore, computation
can be forked onto different units at any branching point in the trie. However, the subtrees resulting
after branching can be very unequal in size, leading to an uneven distribution of computation. Fur-
thermore, once a computing unit is done, there is no obvious point at which itcould restart work on
a different part of the trie.
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Figure 5.2: Timing comparison of brute force kernel computation (hollow dots) vs. trie-based dy-
namic programming computation (full dots). The graph displays the time to completionfor com-
paring one hypothesis set consisting of 73 hypotheses on one side, againstN hypothesis sets on the
other side. The average number of hypotheses per set is 72.8.

A worklist-based approach is better suited: initially, the root’s children are put in a worklist
containing trie nodes. Each computing unit takes one node off the worklist, calculates that node’s
DPV , DPSS , andK, and puts that node’s children back onto the list (save perhaps for oneso it can
continue computing without consulting the worklist). Once a computing unit is done, it again fetches
any node off the worklist and resumes work. That way the worklist is continuously populated with
nodes in the trie for which kernel computation can immediately proceed (as the parent computation
has finished). Computation has finished when all threads are idle and the worklist is empty.

The worklist must be properly synchronized, but the overhead on contemporary architectures is
low; the order of processing worklist items does not matter and singly-linkedlists with prepending
as the fundamental insertion operation can be implemented with lock-free guarantees [220, 81].

A different approach to parallelization can exploit characteristics of the data set used. For ex-
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Figure 5.3: The variation of the improvement factor of the proposed algorithm over a brute force
implementation on the same experiment as in Fig. 5.2.

ample, in the SMT scenario, the hypothesis sets provide a natural means of batching data. Also, the
batching is highly effective because sentences in a hypothesis sets tend tobe similar. Our approach
is to build one trie out of each hypothesis set and distribute its computation to one processing unit.

5.10 Batching via Path Closures for GBL with Structured Inputs and Outputs

We describe below a method for reducing graph sizes with no or small loss in accuracy for graph-
based learning with structured inputs and outputs following the formalism presented in Chapter 4.
The reduction is important when there are very large amounts of unlabeled data and memory con-
sumption becomes a concern. Our proposed solution trades consumed memory for computation;
instead of a large graph it builds and uses several smaller graphs, whichcontain different portions
of interest of the large graph. Depending on the original graph’s connectivity, there could be no loss
or a controllable tradeoff between loss and occupied memory.

Recall from Chapter 4 that the size of a fully constructed graph isu · h + 2, whereh is the aver-
age number of hypotheses per unlabeled sample. We have partly solved thesize problem already by
having all train data occupying only two vertices in the in-core graph, so thesize of the representa-
tion is essentially independent of the training set size. We still need to take measures when scaling
up the approach to large test sets. The number of hypotheses is to some extent controllable, but ifu
is large there is the risk that the graph becomes too large to be manageable. This creates the need
for batching, i.e., devising a means to compute scores on one subset of the unlabeled setat a given
time. That way several smaller graphs are used instead of a large one.

A principled way to achieve a good semi-supervised effect without operating on the entire graph
at once is to work only on one test sample’s hypotheses at any given time. We keep only the
subgraph of interest for that test sample, which needs only to include the vertices reachable from
that test sample’s hypotheses. It is worth noting that reducing the graph does not change the graph,
so the learning process is still global; only the portions of the graph not relevant to computing certain
scores are removed. We will formally prove that below, but first let us define a path in a graph as a
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sequence of distinct connected vertices that links two given vertices.

Definition 5.10.1. Given the undirected graph(V, E), apathbetween verticesv ∈ V andv′ ∈ V is
a sequence of vertices〈〈v, v1, . . . , vn, v′〉〉 satisfying:

{v, v1}, {vn, v′} ∈ E (connected start/endpoint) (5.65)

{vi−1, vi} ∈ E ∀i ∈ {2, . . . , n} (connected consecutive vertices) (5.66)

i 6= j ⇔ vi 6= vj ∀i, j ∈ {1, . . . , n} (distinct inner vertices) (5.67)

v, v′ /∈ {v1, . . . , vn} (inner vertices distinct from start/endpoint) (5.68)

The sequence〈〈v, v′〉〉 is also a path betweenv andv′ if and only if {v, v′} ∈ E. A path is
a cycle if v = v′ andacyclic otherwise. We denote the set of all paths between the two nodes as
Paths(V,E)(v, v′).

Our study is only concerned with acyclic paths, but the definition above allows cycles in order
to stay in keeping with the definition of “path” in established graph terminology and thus avoid
confusion. Acyclic paths may consolidate Eq. 5.65 with Eq. 5.66 and Eq. 5.67with Eq. 5.68.

Definition 5.10.2. Given the undirected graph(V, E) and a subsetV ′ ⊆ V , we denote(V, E) \ V ′

as the graph obtained from(V, E) after removing allv ∈ V ′ and all edges that have at least one end
in V ′:

(V, E) \ V ′ ,
(
V \ V ′,

{
{v, v′} ∈ E | v /∈ V ′ ∧ v′ /∈ V ′

})
(5.69)

Theorem 5.10.3.Consider a similarity graph(V, E) constructed as per Definition 5.5.1 for the
structured learning problem defined by featuresX = 〈〈x1, . . . , xt+u〉〉 ⊆ X , training labels
Y = 〈〈y1, . . . , yt〉〉 ⊆ Y, similarity functionσ : (X × Y) × (X × Y) → [0, 1], and hypothe-
sis generator functionχ : X → F(Y). Given verticesv, v′ ∈ V \ {v+, v−} with v 6= v′, if
Paths(V,E)\{v+,v−}(v, v′) = ∅, then removing vertexv′ from the graph does not affects(v) com-
puted by label propagation.

Proof (by contradiction).Assume that the score computed forv in the graph(V, E) \ {v′} is differ-
ent from the score computed forv in the graph(V, E). Then, under the random walk interpretation
of label propagation, this means there is at least one path fromv to eitherv+ or v− passing through
v′. That path influences the probability of the random walk starting atv and ending inv+ or v−, and
hence the scores(v). Then the sub-path fromv up tov′, which does not include eitherv+ or v− (by
the definition of a path), contradicts the hypothesis thatPaths(V,E)\{v+,v−}(v, v′) = ∅.

We are now in the position of defining a smaller graph on which to compute scores for one given
hypothesis. The unlabeled vertices needed for the precise score computation of hypothesesχ(x) are
exactly those for which a path exists from some hypothesis to them. We formalizethat set as apath
closure.

Definition 5.10.4. Given the undirected graph(V, E) and a subset of its verticesV ′ ⊆ V , we define
thepath closure of(V, E) overV ′ as the graphPaths*(V,E)(V

′) , (V ′′, E′′), where:

V ′′ =
{
v ∈ V | ∃v′ ∈ V ′, Paths(E, v, v′) 6= ∅

}
(5.70)

E′′ =
{
{v, v′} ∈ E | v, v′ ∈ V ′′

}
(5.71)
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Corollary 5.10.5. To compute correct scores for the hypotheses of samplexi in the similarity graph
(V, E), the subgraphPaths*(V,E)\{v+,v−} (χ(xi)) is sufficient.

Proof. Immediate from Definition 5.10.4 and Theorem 5.10.3. After removing (without affecting
scores) all vertices in(V, E) with no paths from some hypothesis inχ(xi), what is left is by defini-
tion the path closure ofχ(xi).

So the transitive closure of the edge set over a subset of verticesV ′ ⊆ V is the smallest com-
ponent of the original graph(V, E) containing all vertices reachable from some vertex inV ′. This
smaller graph does not affect the outcome of the learning process for thefocal test sample. In the
worst theoretical case, the path closure could comprehend the entire graph, but in practice the edge
set is almost never that dense. To counter for the possible worst-case scenario, we use a cutoffC
that limits the number of vertices in the subgraph. The vertex set is computed starting from the
vertices of the hypothesis and expands from there. This growth strategyis based on the heuristic
that faraway nodes connected through low-weight edges have less influence on the result. We use a
simple embodiment of this heuristic in a work-list approach implemented by Algorithm15.

Algorithm 15 : Batching via Path Closure with Cutoff

Input : Focal samplexf , its hypothesesχ(xf ), edge setE, and cutoffC ∈ N
∗.

Output : Graph(Vf , Ef ) for the similarity graph dedicated to computing scores for
hypotheses ofxf .

Vf ← {〈〈xf , y〉〉 | y ∈ χ(xf )} ∪ {v+, v−};1

Ef ←
{
{v, v′} ∈ E | v, v′ ∈ Vf

}
;2

c← true;3

while c do4

c← false;5

foreach{v′, v′′} ∈ E do6

if v′ ∈ Vf ∧ v′′ /∈ Vf ∪ {v+, v−} then7

Vf ← Vf ∪ {v′′};8

Ef ← Ef ∪ {v′, v′′};9

c← true;10

else ifv′′ ∈ Vf ∧ v′ /∈ Vf ∪ {v+, v−} then11

Vf ← Vf ∪ {v′};12

Ef ← Ef ∪ {v′, v′′};13

c← true;14

end15

if card(Vf ) = C then16

break while;17

end18

end19

end20

return (Vf , Ef );21
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Starting from the nodes of interest (hypotheses for the focal sentence), we expand the closure
starting with the direct neighbors, which have the largest influence; then add their neighbors, which
have less influence, and so forth. A thresholdC on the number of added vertices limits undue
expansion while capturing either the entire closure or an approximation of it. The algorithm makes
iteration over the edge setE explicit, to clarify thatE does not have to reside in core memory at any
point throughout the algorithm.

Another practical computational advantage of portioning work in batches isthat graphs for dif-
ferent hypothesis sets can be trivially created and used in parallel, whereas distributing large matrix-
vector multiplication is much more difficult [48]. The disadvantage is that overall redundant com-
putations are being made: incomplete estimates ofs are computed for the ancillary nodes in the
transitive closure and then discarded.
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Chapter 6

CONCLUSIONS

This dissertation has shown that Machine Learning methods based on global similarity graphs
can be used successfully against realistically-sized Human Language Technology tasks addressing
problems in Natural Language Processing, Automatic Speech Recognition,and Machine Transla-
tion.

We have addressed a number of challenges in applying graph-based learning to HLT tasks. We
summarize our contributions below.

Two-pass classifier for unstructured classification To address the heterogeneous, mixed, high-
dimensional nature of features in unstructured HLT classification problems, we have introduced a
two-pass system (Chapter 3). A first-pass classifier, which can be chosen to better suit the nature of
the features, serves as a feature transformation mechanism. In the proposed setup, interestingly, the
graph-based learner operates on the same space for input and output:probability distribution space.
The input space is organized using a distance measure, which is easier to choose than a distance in
the original heterogeneous feature space. We have experimentally confirmed that Jensen-Shannon
divergence is the best distance measure to use in a variety of HLT applications. Furthermore, Jensen-
Shannon divergence enjoys mathematical properties that make it suitable for fast nearest neighbor
algorithms. We have proved that Jensen-Shannon divergence fulfills the requirements for being
used with the kd-trees fast searching data structure, and implemented it measuring a speed gain of
two orders of magnitude in Chapter 5. Metric-based search structures can be also used because
Jensen-Shannon divergence is the square of a metric. We illustrate data-driven graph construction
with experiments on lexicon learning, word sense disambiguation (both in Chapter 3), and phone
classification (Chapter 5).

Structured learning through regression with kernel functions The formalization is widely ap-
plicable and relies on a hypothesis generator functionχ (e.g. a generative learner with good recall
and low precision) and a real-valued similarity functionσ that returns a real number comparing
two input/output pairs for similarity. An important category of similarity functions are kernel func-
tions, among which string kernels are of particular interest to HLT applications. We demonstrate an
application of graph-based learning with string kernels for Machine Translation.

Scalability A common theme in application of graph-based learning to large tasks is scalability.
Graphs require the entire data set (training plus test) to be resident in working memory and con-
nected through similarity edges. This proposition raises obvious scalability concerns in terms of
sheer size and also in terms of time required to build the graph and then to run label propagation
to completion. Naturally, scalability is an important focus of our work. We attackthe scalability
problem on all fronts.
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Graph Construction As far as the graph size is concerned, we prove and implement a graph re-
duction technique that reduces the labeled sample size to one vertex per distinct label (§ 5.4) without
affecting learning results. This reduction has a huge positive impact on both working set size and
learning time. Also, we model additional information source without adding extra vertices by only
manipulating edge weights. This technique effects density gradients without adding to the size of
the graph (§ 3.8.1). In addition, as mentioned above, the use of a two-passclassifier allows us to use
probability divergence measures with good properties, conducive to use of fast nearest-neighbors
algorithms (such as our choice, kd-trees). For structured learning, discrete algorithms are an alter-
native to nearest-neighbors algorithms. We propose an algorithm called DYNTRIE, which combines
traditional matrix-based dynamic programming with the trie data structure to mark additional sav-
ings in duplicate computations when computing cross-product kernel similarities over two sets of
strings. Experiments with MT data show that the proposed method is three times faster than existing
approaches.

Learning Speed To improve propagation speed, we introduce (§ 5.3.1) an in-place label propa-
gation algorithm that uses an improved model parameter as soon as it was computed, as opposed to
computing an entire batch of improved parameters in one epoch. Compared withthe classic iterative
algorithm, in-place propagation consumes half the memory and is faster (experimentally converges
in roughly one third of the number of steps). We also provide the theoreticalproof and implemen-
tation sketch of a multicore label propagation algorithm that uses parallel processing and benign
data races to distribute work on label propagation. The number of cores can be arbitrarily high, up
to the number of unlabeled samples. In our experiments, graph constructionhas always dominated
total learning time, so improving propagation proper might seem of secondary interest. However,
continuous learning systems would derive a large benefit from improved propagation times.

6.1 Future Directions

We see several directions in which our work can be continued and extended. One would concern
improving the learning processper se, regardless of the problem it is being applied to. The two-
pass classifier is currently trained in an open loop, i.e. there is no feedback from the graph-based
engine to the first-pass classification engine. We do recognize that smoothness of the distributions
of the first-pass classifier is essential for the good functioning of the graph-based learner and we
regularize the first-pass classifier accordingly, but we believe that a closed-loop, joint training of the
two classifiers would be closer to optimal. A simple example would be to optimize a neural network
learner by introducing smoothness in the epoch-level decision on keepingor reducing the learning
rate of the network. A more direct coupling is to offer back-propagation information with errors
output by the graph-based learner, not (only) the neural network proper. That approach would work
directly on minimizing the bottom-line goal.

Using other kernels than the Gaussian kernel (§ 3.2) or string kernels (§4.3.1.3) for computing
similarity is a direction worth exploring. Especially when HLT applications with structured data
are concerned, the option of using tree and graph kernels (§ 4.3) is very attractive; trees and graphs
naturally occur in linguistics (e.g. syntax trees or semantic graphs). Using such kernels would put
an even higher emphasis on scalability and efficiency. It may be worth exploring extending the
DYNTRIE algorithm to tree or graph matching, and also combining it with approximation bounds
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for obtaining fast approximate matches. Using other nearest-neighbor techniques aside from kd-
trees are a possible direction in exploring scalability.

As we have already hinted above, the fast convergence time obtained by theproposed algorithm
suggests applicability to continuous learning systems and incremental learners where results are
needed at the same rate as input samples. Systems can be envisioned that maintain a fixed-size
graph with historical samples and their connections, that changes slowly asnew samples are seen
and old samples are discarded.

Finally, applications far removed from HLT can be attempted for scalable graph-based learning.
The battery of proposed techniques extend applicability of graph-basedlearning beyond problems
in which a notion of similarity could be easily defined.
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Appendix A

TWO THEORETICAL BOUNDS FOR SPEED OF CONVERGENCE IN LABEL
PROPAGATION

We have computed two theoretical results that put upper bounds on the number of steps to
convergence within a given toleranceτ without actually running the label propagation algorithms.
Our implementation does not use these bounds but they may be useful for graph analysis and for
improving the graph construction step.

What constitutes a “good” matrixPUU that leads to quick convergence, and what bounds can be
derived about the number of steps to convergence? We compute such bounds depending on features
of PUU. Our practical implementations do not use these theoretical bounds, but they are useful to
assess the quality of a graph before performing iterative label propagation against it. We also hope
that this will inspire future work aimed at finding tighter bounds.

Let us recall the iteration core

fU ← f′U (A.1)

f′U ← PUUfU + PULYL (A.2)

This reveals that iterative label propagation is a repeated application of thefunction

Q : [0, 1]u×ℓ → [0, 1]u×ℓ, Q(X) = PUUX + PULYL (A.3)

The approach we will take to estimating the number of steps to convergence is todefine a metric
space over[0, 1]u×ℓ and then use the fixed point theorem [107, Ch. 7] to bound the steps to of
convergence ofQ. Let us endow the set[0, 1]u×ℓ with the distance measure

dmax(A, B) : [0, 1]u×ℓ → R+ (A.4)

dmax(A, B) = max
i∈{1,...,u}
j∈{1,...,ℓ}

|Aij −Bij | (A.5)

It is trivial to verify that the spaceSmax =
(

[0, 1]u×ℓ, dmax

)

verifies the conditions for being metric

and complete. (dmax is in fact the Minkowski distance of infinite order.) This sets the stage for the
following theorem.

Theorem A.1. If max
i∈{1,...,u}

u∑

k=1

(PUU)ik = γmax < 1, then functionQ is a contraction in the space

Smax =
(

[0, 1]u×ℓ, dmax

)

.
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Proof. To prove thatQ is a contraction we need to show∃q ∈ (0, 1) such thatdmax(Q(A), Q(B)) ≤
q · dmax(A, B) ∀A, B ∈ [0, 1]u×ℓ.

dmax(Q(A), Q(B)) = max
i∈{1,...,u}

max
j∈{1,...,ℓ}

∣
∣
∣(PUUA + PULYL − PUUB − PULYL)ij

∣
∣
∣ (A.6)

= max
i∈{1,...,u}

max
j∈{1,...,ℓ}

∣
∣
∣[PUU (A−B)]ij

∣
∣
∣ (A.7)

= max
i∈{1,...,u}

max
j∈{1,...,ℓ}

∣
∣
∣
∣
∣

u∑

k=1

(PUU)ik(A−B)kj

∣
∣
∣
∣
∣

(A.8)

≤ max
i∈{1,...,u}

max
j∈{1,...,ℓ}

u∑

k=1

[

(PUU)ik

∣
∣
∣(A−B)kj

∣
∣
∣

]

(A.9)

≤ max
i∈{1,...,u}

max
j∈{1,...,ℓ}

u∑

k=1

[

(PUU)ik max
k∈{1,...,u}

|(A−B)kj |
]

(A.10)

= dmax(A, B) · max
i∈{1,...,u}

u∑

k=1

(PUU)ik = γmaxdmax(A, B) (A.11)

SoQ is a contraction in a complete metric space, and the sought-after constantq is γmax.

It follows by Banach’s fixed point theorem [107, Ch. 7] thatQ has a unique fixed point that can
be reached by repeated application starting from an arbitrary element in[0, 1]u×ℓ.

This result is similar to that of Theorem 2.3.1 obtained by Zhu [238] and with thesame restric-
tion onPUU, but this form provides a bound for the speed of convergence. If wedenotefstep0

U as the
initial value offU, f

stept
U as the value offU after thetth step, andfstep∞

U as the fixed point, then [107,
Ch. 7]

dmax(f
step∞
U , f

stept
U ) ≤ γt

max

1− γmax
· dmax

(

f
step 1
U , f

step0
U

)

(A.12)

so at each step the distance from the solution decreases by at least a factor of γmax. Althoughfstep0
U

can be an arbitrary element in[0, 1]u×ℓ, its choice does affect speed of convergence and monotonic-
ity. Algorithm 1 choosesfstep0

U = 0, therefore

dmax(f
step∞
U , f

step t
U ) ≤ γt

max

1− γmax
· max

i∈{1,...,u}
j∈{1,...,ℓ}

(PULYL)ij (A.13)

We can now get a bound on the number of steps to convergence for a label propagation algorithm
that usesdmax(f

stept+1
U , f

stept
U ) as its termination condition with toleranceτ :

t ≤ logγmax

τ(1− γmax)

max
i∈{1,...,u}
j∈{1,...,ℓ}

(PULYL)ij

(A.14)

=

ln (τ(1− γmax))− ln max
i∈{1,...,u}
j∈{1,...,ℓ}

(PULYL)ij

ln γmax
(A.15)



132

In fact,γmax as just computed is also the lowest bound in the spaceSmax =
(

[0, 1]u×ℓ, dmax

)

for functionQ, also called the Lipschitz constant [107]. This means that at least in this particular
space,γmax is the best bound on the convergence speed forQ.

Theorem A.2. The boundγmax is the Lipschitz constant forQ in spaceSmax =
(

[0, 1]u×ℓ, dmax

)

.

Proof. We will show that for certain valuesA andB, the inequalities A.9 and A.10 (page 131) turn
into equalities. For equation A.9, the inequality becomes equality ifAkj ≥ Bkj ∀i ∈ {1, . . . , u}, j ∈
{1, . . . , ℓ}. For equation A.10, the inequality becomes equality if matrixA − B has all elements
equal to one another. So

A−B = au×ℓ ⇒ dmax(Q(A), Q(B)) = γmax · dmax(A, B) = a (A.16)

which concludes the proof because any choice smaller thanγmax would invalidate the inequality.

In order to achieve rapid convergence, a smallγmax and a strong maximum element inPUL are
desirable; both describe, unsurprisingly, a graph that has strong connections between labeled and
unlabeled nodes.

One problem with the bound computed above is that the restriction onPUU is quite harsh: each
unlabeled point must be directly connected to at least one labeled point such that after normalization,
the total weight connecting it to other unlabeled nodes is strictly less than 1. Itis worth searching
for a different theoretical bound. To that end, we define a differentmetric over the same matrix set:

dΣ(A, B) =
u∑

i=1

ℓ∑

j=1

|Aij −Bij | (A.17)

The resulting spaceSΣ =
(

[0, 1]u×ℓ, dΣ

)

allows a different bound and a different restriction onPUU.

This time sums over columns (as opposed to rows) of elements inPUU are involved.

Theorem A.3. If max
i∈{1,...,u}

u∑

i=1

(PUU)ik = γΣ < 1, then functionQ is a contraction in spaceSΣ =

(

[0, 1]u×ℓ, dΣ

)

.
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Proof.

dΣ(Q(A), Q(B)) =
u∑

i=1

ℓ∑

j=1

∣
∣
∣(PUUA + PULYL − PUUB − PULYL)ij

∣
∣
∣ (A.18)

=
u∑

i=1

ℓ∑

j=1

∣
∣
∣[PUU (A−B)]ij

∣
∣
∣ (A.19)

=

u∑

i=1

ℓ∑

j=1

∣
∣
∣
∣
∣

u∑

k=1

(PUU)ik (A−B)kj

∣
∣
∣
∣
∣

(A.20)

≤
u∑

i=1

ℓ∑

j=1

u∑

k=1

[

(PUU)ik

∣
∣
∣(A−B)kj

∣
∣
∣

]

(A.21)

=
ℓ∑

j=1

u∑

k=1

[
∣
∣
∣(A−B)kj

∣
∣
∣

u∑

i=1

(PUU)ik

]

(A.22)

≤ γΣdΣ(A, B) (A.23)

SoQ is a contraction inSΣ with γΣ as a bound for its contraction constant.

We can derive similar bounds on speed of convergence and maximum number of steps forγΣ

as we did forγmax. (However,γΣ is not easily shown as the Lipschitz constant.) Theorem A.1
tracks the largest error in each iteration, whereas Theorem A.3 characterizes global convergence by
tracking the sum of all errors.
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Appendix B

EXPONENTIAL SPEEDUP OF LABEL PROPAGATION

In the following we show how speed of convergence in the label propagation algorithm can
be accelerated exponentially. Our experiments do not use this definition andinstead use in-place
label propagation which has a smaller working set. However, the algorithm below may be of in-
terest when the graphs have relatively few vertices but are densely connected. On a given input, if
original label propagation would converge inn steps, the algorithm presented below converges in
approximatelylog n steps.

Let us consider an already reduced graph withℓ labeled nodes andu unlabeled nodes, and define
matrixS as follows:

S =

[
1ℓ 0ℓ×u

PUL PUU

]

(B.1)

where1ℓ is the identity matrix of sizeℓ and0ℓ×u is a matrix of sizeℓ×u containing zeros. It is easy
to verify that raisingS to the power oft yields

St =






1ℓ 0ℓ×u

(
t∑

i=0

Pt
UU

)

PUL PUU




 (B.2)

The bottom-left quadrant ofSt is exactlyfU aftert iterations of Zhu’s label propagation algorithm
starting fromfU = 0, as shown in eq. 2.8. This means computing powers ofS is an alternate
way of converging to the solution. Then the harmonic function would be the bottom-left quadrant of
S∞ = lim

t→∞
St. Such a way of implementing label propagation would not be more attractive for large

data sets given that the matrices involved are larger, were it not for a simplebut crucial observation:
large powers ofS can be computed exponentially faster by repeatedly squaring the intermediate
result, as opposed to just multiplying the intermediate result byS. That way, by usingt matrix
multiplications, we can computeS2t

instead ofSt—an exponential speedup.

S2t

=

((((
S2
)2
)2
)2

. . .

)2

(B.3)

This algorithm for computing large powers over a field was known as far back as ancient Egypt
and is described in detail in Knuth’s treatise [123, Vol. 2, pp. 465–481].So the core iteration to
convergence is

S ← S2 (B.4)
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which can be rewritten as

SSW ← (SSE + 1)SSW (B.5)

SSE ← S2
SE (B.6)

whereSSW is the bottom-left quadrant ofS (initially PUL) andSSE is the bottom-right quadrant ofS
(initially PUU). The cost of the exponential speedup is that, in addition to the matrix multiplication
between au × u matrix and au × ℓ matrix (same cost as for the other algorithms), there is a need
to also perform a squaring of au× u matrix. If PUU is dense, in a straight implementation of matrix
product, the complexity of the algorithm jumps fromO(ℓ · u2) to O(u3), which is an important
change because we pursue scalability acrossu while ℓ is often considered a constant. However, ifu

is relatively small or ifPUU is sparse by using a nearest-neighbors method of graph construction, the
benefits of exponential speedups can be enjoyed at an affordable extra cost per step.
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[160] Maŕıa Luisa Mićo, Jośe Oncina, and Enrique Vidal. A new version of the nearest-neighbour
approximating and eliminating search algorithm (aesa) with linear preprocessing time and
memory requirements.Pattern Recogn. Lett., 15(1):9–17, 1994. ISSN 0167-8655. URL
http://dx.doi.org/10.1016/0167-8655(94)90095-7 .

[161] R. Mihalcea, T. Chklovski, and A. Killgariff. The Senseval-3 English Lexical Sample Task.
In Proceedings of ACL/SIGLEX Senseval-3, 2004.

[162] George A. Miller and Patricia E. Nicely. An analysis of perceptual confusions among some
english consonants.The Journal of the Acoustical Society of America, 27(2):338–352, 1955.
URL http://dx.doi.org/10.1121/1.1907526 .

[163] Thomas P. Minka. Bayesian inference, entropy, and the multinomial distribution, 2007. URL
http://citeseer.ist.psu.edu/171980.html .

[164] S. Mohammad and T. Pedersen. Complementarity of Lexical and Simple Syntactic Features:
The SyntaLex Approach to Senseval-3.Proceedings of the SENSEVAL-3, 2004.

[165] M. Mohri. Finite-state transducers in language and speech processing. Computational lin-
guistics, 23(2):269–311, 1997.

[166] Andrew Moore. A tutorial on kd-trees. Technical Report 209,University of Cambridge, 1991.
URL http://www.cs.cmu.edu/ ˜ awm/papers.html . Extract from PhD Thesis.

[167] Pedro J. Moreno, Purdy P. Ho, and Nuno Vasconcelos. A Kullback-Leibler divergence based
kernel for SVM classification in multimedia applications. InIn Advances in Neural Informa-
tion Processing Systems 16. MIT Press, 2003.

[168] Arnold Neumaier. Solving ill-conditioned and singular linear systems: Atutorial on regular-
ization. SIAM Review, 40:636–666, 1998.



148

[169] A.Y. Ng. Feature selection,L1 vs.L2 regularization, and rotational invariance.ACM Inter-
national Conference Proceeding Series, 2004.

[170] NIST. Automatic evaluation of machine translation quality using n-gram co-occurrence
statistics. NIST, 2002. URL http://www.nist.gov/speech/tests/mt/doc/
ngram-study.pdf .

[171] N.Young. An Introduction to Hilbert Spaces. Cambridge University Press, 1988. ISBN
978–0521337175.

[172] F.J. Och. Minimum Error Rate Training in Statistical Machine Translation. In Proceedings
of the 41st Annual Meeting on Association for Computational Linguistics-Volume 1, pages
160–167. Association for Computational Linguistics Morristown, NJ, USA,2003.

[173] F.J. Och and H. Ney. Discriminative training and maximum entropy models for statistical ma-
chine translation. InProc. of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL), volume 8, 2002.

[174] F.J. Och and H. Ney. Giza++: Training of statistical translation models.Disponible sur
http://www. fjoch. com/GIZA++. html, 2003.

[175] F.J. Och and H. Ney. The alignment template approach to statistical machine translation.
Computational Linguistics, 30(4):417–449, 2004.

[176] F.J. Och, C. Tillmann, H. Ney, et al. Improved alignment models for statistical machine
translation. InProc. of the Joint SIGDAT Conf. on Empirical Methods in Natural Language
Processing and Very Large Corpora, pages 20–28, 1999.

[177] M.T. Orchard. A fast nearest-neighbor search algorithm. InAcoustics, Speech, and Signal
Processing, 1991. ICASSP-91., 1991 International Conference on, pages 2297–2300, 1991.

[178] B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. InProceedings of the ACL, pages 115–124, 2005.

[179] B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity summa-
rization based on minimum cuts.Proceedings of the ACL, pages 271–278, 2004.

[180] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for auto-
matic evaluation of machine translation. InACL ’02: Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pages 311–318, Morristown, NJ, USA, 2001.
Association for Computational Linguistics.

[181] M. Paul, E. Sumita, and S. Yamamoto. Example-based Rescoring of Statistical Machine
Translation Output.Proc of the HLTNAACL, Companion Volume, pages 9–12, 2004.

[182] J. Platt. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods.Advances in Large Margin Classifiers, 6174, 1999.



149

[183] M. Przybocki, G. Sanders, and A. Le. Edit Distance: A Metric for Machine Translation
Evaluation. InActes de LREC 2006 (5th International Conference on Language Resources
and Evaluation), pages 2038–2043, 2006.

[184] Taylor R. A users guide to measure-theoretic probability.Journal of the American Statistical
Association, 98:493–494, January 2003. URLhttp://ideas.repec.org/a/bes/
jnlasa/v98y2003p493-494.html .

[185] C. Rao. Differential Geometry in Statistical Interference.IMS-Lecture Notes, 10:217, 1987.

[186] A. Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In Proceed-
ings of EMNLP, pages 133–142, 1996. URLhttp://citeseer.ist.psu.edu/
ratnaparkhi96maximum.html .

[187] M. Reed and B. Simon.Functional Analysis. Revised and enlarged Edition., volume I of
Methods of Modern Mathematical Physics. Academic Press, San Diego, 1980.

[188] JD Reiss, J. Selbie, and MB Sandler. OPTIMISED KD-TREE INDEXING OF MULTIME-
DIA DATA. In Digital Media Processing for Multimedia Interactive Services: Proceedingsof
the 4th European Workshop on Image Analysis for Multimedia Interactive Services, page 47.
World Scientific, 2003.

[189] K. Rieck, P. Laskov, and S. Sonnenburg. Computation of similarity measures for sequential
data using generalized suffix trees.Advances in Neural Information Processing Systems, 19:
1177, 2007.
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