
 1

The Design Is In The Code
Enhanced Reuse Techniques in C++

Abstract
Extreme Programming emphasizes the coding activity in all its aspects. It would be

useful, then, if new coding techniques could render the code higher-level, more compact,
more reusable, and easier to change.

This paper describes policy classes in C++ - a new approach that combines generic
programming and object-oriented techniques. The end is to make it easier to express and
convey design entities directly in code.

Using policy classes, library writers can make it possible to better achieve the
"write once and only once" goal - provide high-level, powerful, extensible libraries. Lev-
eraging design patterns [1] and language-specific idioms as recipes for successful solu-
tions, generic libraries using policy classes truly democratize good designs. The example
used throughout this paper is defining a truly generic, flexible, portable smart pointer - a
popular C++ idiom and an incarnation of the Proxy design pattern [2].

Pre-requirements
Good knowledge of C++ and OOP design. Acquaintance with design patterns.

Keywords
Reuse, policy classes, traits, generic programming, object-oriented design, design

patterns, C++, templates, template specialization.

Introduction
Extreme Programming puts a significant emphasis on coding. XP includes pair pro-

gramming and continuous refactoring as essential components of the development proc-
ess.

Old-fashioned processes render design modifications the exception; in XP, change
is the rule. New code structures, then, ought to be developed to back up this tendency.
They should be high-level, concise, expressive, easy to understand, and easy to change.

Traditionally, coding is seen as the process that takes a design to its ultimate detail.
For this reason, sometimes the ideas underlying a piece of code, like a design pattern [1],
get lost in the avalanche of details, context-related idiosyncrasies, and tweaks that the
code has to provide to ensure proper functionality. There is an explanation for each line
of code, but as a whole, the code blurs the design. Usually, developers help themselves
with comments: "This class implements an Observer for objects of type Wi dget , which
generate synchronous events of type Wi dget Changed." Or: "Class App is a Singleton
that supports multithreaded access." Short of analyzing the code of App, there is no sim-
ple way to figure out whether App is a multithreaded Singleton or not, and, for that mat-
ter, whether it is correctly and efficiently implemented. Seasoned designers know what a
multithreaded Singleton is; the problem is that this information resides in a chunk of code
that must be dug out, instead of a clear declarative statement.

 2

Also, consider the innumerable ways in which the Singleton object can be initial-
ized. Moreover, specialized techniques and recipes, like making a Singleton thread-safe
[3] have limited portability. All these issues effectively limit one's ability to define a truly
portable library that provides typical pattern implementations, thus missing an important
reuse opportunity.

Switching between two well-known variants of a design pattern is a nontrivial proc-
ess, because pattern variants don't map to code in a straight manner. For instance, chang-
ing the identifier type in a parameterized Factory Method [4] incurs cascading changes to
the code and the data structures in the implementation space. This makes changes that are
very simple and natural at design level to become unacceptably clumsy at coding level.
Design and code evolve separately, and as the code dictates the actual behavior, usually
the design is doomed to obsolescence. Hence the ironic adage: "The code is the design".

New generic programming techniques [5] render coding with design patterns and
advanced C++ idioms simpler, and change more affordable. They make it possible to ex-
press some common design patterns and idioms in as little as a couple of clear declarative
statements. If the default behavior is not satisfactory, you don't have to restart from
scratch - you can punctually override the defaults to support an open-bounded range of
behaviors.

These techniques map design much more directly to code, transforming the adage
above into the more desirable: "The design is in the code".

The Multiplicity of Design
Much of the difficulty in implementing a software system is to choose between

various competing solutions for each architectural issue, at all levels. The solutions are
similar in the sense that they all ultimately solve (or promise to solve) the problem at
hand. Yet, they sport different costs and tradeoffs and have distinct sets of advantages
and disadvantages. In turn, each solution might have a large number of variants, and this
multiplicity manifests itself at all levels of a design problem - from the highest to the
lowest.

Design patterns come with a systematic way of discovering and documenting sound
design solutions. Idioms do the practically the same in the narrower context of a specific
programming language. However, programmers, although they might use these higher-
level structures, must implement them in most cases starting from first principles.

This problem exists because of the combinatorial nature of design. A design is a de-
liberate choice of a set of tradeoffs, out of a combinatorial space. For instance, a Single-
ton object can be single-threaded or multithreaded; allocated statically, on the free store,
or in some implementation-specific memory space; and constructed with various numbers
and types of parameters. All these features can be combined freely. In the presence of
such open-ended options, it is hard to provide a library Singleton that's not too rigid. A
flexible implementation should leave the user full freedom for tweaking any of its as-
pects, in addition to providing a good set of defaults.

For implementing design structures and for working with design patterns, a library
should help in the following ways.

• Cope with the combinatorial nature of design with a reasonably small code
base;

 3

• Allow the user to combine tradeoffs and design decisions in any ways that make
sense;

• Validate the chosen set of tradeoffs at compile time;
• Make the resulting code reasonably efficient;
• Do not incur a penalty in space or runtime for options that are not used;
• Make the resulting implementation small, terse, and easy to explain to peers;
• Make it easy to change the design options after the fact.
No built-in feature or idiom of traditional procedural, functional, or object-oriented

programming supports these requirements.
Procedural programming combines behaviors by using pointers to functions. Func-

tional programming uses function objects. Object-oriented programs use inheritance and
containment in various forms.

Each of these forms of coping with combinatorial behaviors has its own advantages
and disadvantages. They all share the disadvantage of postponing to runtime things that
should be performed at compile time. Most design decisions - like the threading model of
a class - are immutable at runtime. Unnecessary dynamism wastes essential checking and
optimization opportunities.

Generic programming techniques, implemented herein with C++ templates, can
provide combinatorial behaviors with a linear amount of code. The mixing and matching
is checked at compile time. In addition, possible behaviors are open-ended, thus reducing
the need to start a design implementation from scratch whenever a special circumstance
occurs.

Template Parameters as Design Constraints
Originally, parameterized types were introduced in C++ to allow creation of generic

type-safe containers. Needs such as creating fixed generic arrays led to the addition of
non-type (integral and address) template parameters. Over time, to accommodate more
and more powerful generic programming idioms, the template engine of the compiler
evolved into an intricate pattern-matching engine, combined with the integral arithmetic
calculator that was already available.

Templates work at a meta-linguistic level; they form a little metalanguage on top of
the rest of C++. Template code can be seen as guidelines to the compiler to generate ac-
tual code. The generated code is in non-templated C++.

This viewpoint leads to the idea that templates can be used to help various tasks that
fall in the contingency of compile time, like design itself.

The elements controlling code generation are template parameters. Each template
parameter is one degree of freedom on which generated code can vary. By fixing one of
those parameters, you fix a dimension of variability, while the others can still control
code generation on other dimensions.

A description of this fertile view of templates can be found in [6].
Link this concept with perusing a design pattern that offers many design choices.

Combined, the choices lead to a plethora of variants, making traditional reusable design
impractical, complicated, and hard to optimize.

However, if design choices are mapped to the template parameters of a template
class, we can achieve combinatorial effect with a linear amount of well-chosen primi-

 4

tives. The compiler generates and combines the appropriate primitives as requested at
template instantiation time, and ignores the unused ones.

Below is presented with examples a C++ idiom that helps in building flexible li-
braries of typical design implementations.

Policy Classes
Policy classes are implementations of punctual design choices. They are not in-

tended for standalone use; instead, they are inherited from, or contained within, other
classes.

A policy class defines a C++-specific interface. The interface consists of inner type
definitions, member functions, and possibly member data definitions. In this respect, pol-
icy classes resemble traits classes [7]. Unlike most traits classes, policy classes can be
either templated or not templated. They also are typically behavior-richer than traits
classes.

A policy class not only defines an interface; it also implements that interface. This
sets an important distinction between policy classes and interfaces, without putting them
to competition. Interfaces are a communication device; policy classes are an implementa-
tion device. In particular, a policy class can implement an interface.

For example, each of the three policy classes below implements a locking policy
that corresponds to a specific threading model. Each locking policy class defines an inner
type called Lock . The policy states that for the duration of a Lock object, operations on
its host policy object are guaranteed to be atomic. This defines a simple, yet lucrative,
threading model.

cl ass Si ngl eThr eaded
{
publ i c:
 c l ass Lock
 {
 publ i c:
 Lock(Si ngl eThr eaded&) { }
 } ;
} ;

c l ass Cl assLevel Lockabl e
{
publ i c:
 c l ass Lock
 {
 publ i c:
 Lock(Cl assLevel Lockabl e&) { mut ex_. Acqui r e() ; }
 ~Lock() { mut ex_. Rel ease() ; }
 } ;
pr i vat e:
 st at i c Mut ex mut ex_;
} ;

 5

cl ass Obj ect Level Lockabl e
{
publ i c:
 c l ass Lock
 {
 publ i c:
 Lock(Obj ect Level Lockabl e& obj) : m_(obj . mut ex_)
 { m_. Acqui r e() ; }
 ~Lock() { m_. Rel ease() ; }
 pr i vat e:
 Mut ex& m_;
 } ;
pr i vat e:
 Mut ex mut ex_;
 f r i end cl ass Lock;
} ;

The three policy classes defined above provide different threading models under the
same interface. A class that wants to take advantage of locking inherits one of the poli-
cies. The actual policy class chosen depends on what kind of locking is needed, as shown
below:

t empl at e <cl ass Poi nt ee>
cl ass Smar t Pt r : publ i c Cl assLevel Lockabl e
{
 . . .
 Smar t Pt r & oper at or =(const Smar t Pt r & ot her)
 {
 Lock guar d(ot her) ;
 . . . per f or m oper at i on . . .
 }
pr i vat e:
 Poi nt ee* poi nt ee_;
} ;

The question arises, what advantage does Cl assLevel Lockabl e give us? For

one thing, the parameter passed to Lock 's constructor is unused, and Smar t Pt r could
have used a static Mut ex directly - a standard, easy to understand locking strategy.

However, if Smar t Pt r used a locking strategy directly, changing that strategy
would have incurred changes to several Smar t Pt r member functions. The quality of
locking (for instance, correctly pairing the Acqui r e/Rel ease calls in the presence of
early returns and exceptions) would have depended largely on Smar t Pt r 's implementer.
Moreover, to figure out the actual locking strategy used, a reviewer must analyze the
Smar t Pt r implementation.

The approach using a locking policy class has important advantages in flexibility
and clarity:

 6

• The locking strategy of Smar t Pt r can be figured by simply looking at the
Smar t Pt r base class list.

• All locking strategies have the same interface, which means that you can later
change the locking model only by changing Smar t Pt r 's base class and re-
compiling Smar t Pt r .

• The three locking policies are highly reusable classes that distill the threading
aspect in defining a class, without interfering with other aspects. Therefore,
locking policies can be carefully implemented, documented, and put in a library.

Compilers commonly optimize out unused arguments and empty base classes, lead-
ing to a Smar t Pt r implementation that's as efficient as a handcrafted one.

However, in the setting above, the user cannot use a single-threaded Smar t Pt r
and a multithreaded one in the same application. If at least one Smar t Pt r is multi-
threaded, all Smar t Pt r instantiations will pay the locking price. To solve this problem,
we must make the locking policy a template parameter of Smar t Pt r .

t empl at e <cl ass Poi nt ee,
 c l ass Locki ngPol i cy = Si ngl eThr eaded>
cl ass Smar t Pt r : publ i c Locki ngPol i cy
{
 . . .
} ;

The required interface of a locking policy is an inner class Lock . The semantics of

Lock is that it makes operations on an object atomic for the lifetime of a Lock object.
Any conforming implementation of the locking policy can be plugged in Smar t Pt r .
The three classes presented provide default, often used, locking policies.

Policy Classes With Generic Behavior
The threading policy class defined above has semantics independent of the

Smar t Pt r or pointee type. In general, however, policy classes have generic behavior.
For instance, imagine defining a null checking policy for our Smar t Pt r . Depend-

ing on the speed and the safety needed by the application, smart pointers might sport
various checking levels. A fast Smar t Pt r might implement no checking at all, while in
some applications a null check before each dereference is desirable.

A possible interface for a null checking policy class would consist of a unique func-
tion, Check . Because Check might need the type and the value of the pointee object,
the null checking policy is a template class (as opposed to a simple class like the thread-
ing policy is). The policy below throws a standard error object if the pointer passed to
Check is null. The text of the exception thrown contains the name of the pointee type,
which makes it necessary to know the pointee type (Poi nt ee) in Check .

t empl at e <cl ass T>
cl ass Ful l Checki ngPol i cy
{
publ i c:

 7

 st at i c voi d Check(const T* p)
 {
 i f (p) r et ur n;
 t hr ow st d: : r unt i me_er r or (
 st d: : st r i ng(" Nul l poi nt er of t ype ") +
 t ypei d(T) . name() + " det ect ed") ;
 }
} ;

Generic (templated) policy classes have considerably broader flexibility than simple
policy classes. In practice, only the simplest policies are non-templated. Most policy
classes either are templates or have template member functions.

If a class needs to enforce a policy class to be template, it can do this by requiring a
template template parameter, as shown below.

t empl at e
<
 c l ass Poi nt ee,
 t empl at e <cl ass U> cl ass Checki ngPol i cy
>
c l ass Smar t Pt r
{
 . . .
} ;

This setting is particularly useful when Smar t Pt r needs to use the checking pol-

icy with two types instead of only with Poi nt ee. Template template arguments also
avoid the redundant repetition of the Poi nt ee type, as in the slightly uncomfortable
Smar t Pt r <Wi dget , Ful l Checki ngPol i cy<Wi dget > >.

Combining Multiple Policy Classes
In isolation, policy classes provide the known advantages of a modular design and

the potential of increased reuse.
However, the true power of policy classes comes from their ability to combine

freely. The client of a template class designed around policies can combine policies either
by mixing and matching predefined policies, or by adding new ones. By combining sev-
eral policy classes in a template class with multiple parameters, one achieves combinato-
rial behaviors with a linear amount of code. In addition to increasing the amount of reuse,
this property of policy classes makes them suitable as building blocks in higher level li-
braries.

Let's combine a locking policy and a checking policy in the Smar t Pt r class tem-
plate.

t empl at e
<
 c l ass Poi nt ee,

 8

 c l ass Locki ngPol i cy = Si ngl eThr eaded,
 t empl at e <cl ass U> cl ass Checki ngPol i cy =
 Ful l Checki ngPol i cy
>
c l ass Smar t Pt r
 : publ i c Locki ngPol i cy
 , publ i c Checki ngPol i cy<Poi nt ee>
{
 . . .
 Smar t Pt r & oper at or =(const Smar t Pt r & ot her)
 {
 Lock guar d1(* t hi s) ;
 Lock guar d2(ot her) ;
 . . . per f or m copy oper at i on . . .
 }
 Poi nt ee& oper at or * ()
 {
 r et ur n * oper at or - >() ;
 }
 Poi nt ee* oper at or - >()
 {
 Checki ngPol i cy<Poi nt ee>: : Check(poi nt ee_) ;
 r et ur n poi nt ee_;
 }
pr i vat e:
 Poi nt ee* poi nt ee_;
} ;

The copying operation in oper at or = can be - and should be - defined by yet an-

other policy class.
As suggested by the incomplete implementation above, in an implementation built

around policy classes, the Smar t Pt r template class itself becomes syntactic glue that
dovetails together several policy classes. Each of these policy classes implements a spe-
cific aspect of the smart pointer behavior.

Suppose we define three policies for locking (threading model) and four policies for
checking. We already have twelve possible behaviors of Smar t Pt r . These behaviors
are selected by the user of Smar t Pt r with a single type definition. For instance, the
type definition below defines a pointer to Wi dget objects that support class level lock-
ing semantics and null checking with the asser t macro (the Asser t Checked policy
class, not shown, is trivial to implement).

t ypedef Smar t Pt r
<
 Wi dget ,
 Cl assLevel Lockabl e,
 Asser t Checked
>

 9

Wi dget Pt r ;

Because class templates using policies - such as Smar t Pt r - are likely to have

many template parameters, almost any reasonable use thereof should be through a
t ypedef . Type definitions are not only a convenience but also an abstraction in itself.
In the space of designing with policies, type definitions are equivalent to function defini-
tions of traditional implementation. A practical consequence of concentrating policy se-
lections in type definitions is that the resulting type definitions provide unique points of
maintenance.

As multiple policies are defined and used with a class, the advantages of a policy-
based approach become more and more evident and even spectacular. The Smar t Pt r
class template described in [5] uses six policies - for ownership, error handling, implicit
conversion, array handling, threading, and storage. Although each policy is easy to im-
plement and needs little code, the policies combine to provide about 160 different behav-
iors, easily selectable by feeding appropriate template arguments to Smar t Pt r . It is
very hard to deal with such a multitude of behaviors with traditional means.

A policy-based class thoroughly documents the syntactic and semantic require-
ments for each of its policies. This way, users can develop and use their own policies,
which add to the pre-built ones. This makes a policy-based approach very flexible and
suitable even in the most particular applications.

Because each policy in Smar t Pt r implements a well-defined decision or con-
straint in the smart pointer design space, Smar t Pt r users deal with high-level concepts
such as error handling strategies or ownership strategies. In contrast, when developing a
smart pointer starting from scratch, a programmer has to deal with all smart pointer de-
sign issues, plus a plethora of subtle syntactical issues. A handcrafted, more specialized,
smart pointer is likely to be more rigid and less resilient to design changes than an instan-
tiation of a policy-based smart pointer.

Policy-based implementations reach many of the goals stated in the introduction of
this paper. Their use fosters a more natural mapping of design choices and constraints to
implementation artifacts. Policies cope with the combinatorial nature of design with lin-
ear effort in an economic, organized manner. A policy-based class combines little select-
able structural and behavioral entities into larger structures.

Conversions Between Policies
An application can use the same policy-based class template (Smar t Pt r in our

example) instantiated with various design decisions. For instance, most smart pointers are
checked upon each dereference, while some performance-critical code might use un-
checked smart pointers.

From a compiler's perspective, two different instantiations of the same class tem-
plate are completely different types. However, for the program, certain conversions be-
tween smart pointers are sensible. For instance, an unchecked smart pointer should be
convertible to a smart pointer with dereference checking. On the other hand, converting a
multithreaded smart pointer to a single-threaded one is an error that should be signaled at
compile time.

Policy libraries can solve conversions in a simple and elegant way by initializing
and assigning objects on a per policy basis.

 10

For example, in addition to the copy constructor, Smar t Pt r gets added a conver-
sion constructor that accepts a Smar t Pt r instantiation with different template argu-
ments.

/ / I nsi de Smar t Pt r ' s c l ass def i ni t i on
t empl at e <cl ass P, c l ass L,
 t empl at e <cl ass U> cl ass C>
Smar t Pt r (const Smar t Pt r <P, L, C>& ot her)
: poi nt ee_(ot her . poi nt ee_)
, Locki ngPol i cy(ot her)
, Checki ngPol i cy<Poi nt ee>(ot her)
{
}

The code above initializes Smar t Pt r policy by policy, passing ot her to each

policy constructor. One of three things might happen:
• The source policy is the same as the target policy. This is the case of a simple

copy construction.
• The source policy is incompatible with the target policy. In this case, the ini-

tialization is a compile-time error.
• The source policy is convertible to the target policy. (For example, the source

policy is derived from the target policy.) In this case, the initialization is legal.
The third case leaves the policy developer the option on which other policies to

consider compatible, and which to reject. For example, if Ful l Checki ngPol i cy has
a conversion constructor that accepts a NonChecki ngPol i cy , the Smar t Pt r user
will be able to construct a checked pointer from an unchecked one.

Caveat
Designing with policy classes is expressive and productive, but inherently compile-

time bound. Policy classes should be used for those aspects of a design that are fixed at
runtime. Overusing policies might lead to excessive recompilation, code bloating, and
rigid architectures.

Also, using policies is fun, but decomposing classes and choosing the right interface
for each policy is hard. The onus of choosing the most orthogonal policy set falls on the
component library developer.

A typical effect of choosing a non-orthogonal decomposition is the apparition of
policies that depend on each other. A Smar t Pt r -related example: the storage policy -
which deals with memory allocation and deallocation - is tied in unfortunate ways with
the array policy, which deals with aspects like oper at or [] . Depending on the array
policy, the storage policy must issue either a del et e or a del et e[] call.

Fortunately, library development is usually performed by a minority of experienced
designers. From this perspective, policy-based libraries democratize good design prac-
tices.

Conclusion

 11

Implementing code based upon advanced idioms and design patterns is a tough en-
deavor when starting from first principles. The higher-level design structures do not map
to similar code structures naturally, and ultimately the implementation blurs the simplic-
ity and the terseness of the design.

The Policy Class C++ idiom fosters defining high-level classes in terms of other
classes, each implementing one specific aspect - design choice, constraint - of a design.
The high-level class becomes a template class, accepting each of the design constraints as
a template parameter.

The resulting setting allows library developers to define highly configurable high-
level classes without sacrificing performance or flexibility. Well-designed policy-based
classes support many different behaviors by combining at compile time a small set of
core policies.

Bibliography
[1] Gamma, E., et al. Design Patterns, Addison–Wesley, Reading, MA, 1995.
[2] Design Patterns, pp. 207-217
[3] Schmidt, D., et al. Double-Checked Locking. In Pattern Languages of Program

Design 3, Addison–Wesley, Reading, MA, 1998, pp. 363–375.
[4] Design Patterns, pp. 110
[5] Alexandrescu, A. Design with C++ (tentative title), Addison–Wesley, Reading,

MA, 2001 (in press).
[6] Coplien, James O. Multi-Paradigm Design for C++, Addison–Wesley, Read-

ing, MA, 1999, pp. 39-43.
[7] Alexandrescu, A. Traits: The else-if-then of Types, C++ Report, April 2000.

