
 1 

The Design Is In The Code 
Enhanced Reuse Techniques in C++ 

 
 

Abstract 
Extreme Programming emphasizes the coding activity in all its aspects. It would be 

useful, then, if new coding techniques could render the code higher-level, more compact, 
more reusable, and easier to change. 

This paper describes policy classes in C++ - a new approach that combines generic 
programming and object-oriented techniques. The end is to make it easier to express and 
convey design entities directly in code. 

Using policy classes, library writers can make it possible to better achieve the 
"write once and only once" goal - provide high-level, powerful, extensible libraries. Lev-
eraging design patterns [1] and language-specific idioms as recipes for successful solu-
tions, generic libraries using policy classes truly democratize good designs. The example 
used throughout this paper is defining a truly generic, flexible, portable smart pointer - a 
popular C++ idiom and an incarnation of the Proxy design pattern [2]. 

 
Pre-requirements 
Good knowledge of C++ and OOP design. Acquaintance with design patterns. 
 
Keywords 
Reuse, policy classes, traits, generic programming, object-oriented design, design 

patterns, C++, templates, template specialization. 
 
Introduction 
Extreme Programming puts a significant emphasis on coding. XP includes pair pro-

gramming and continuous refactoring as essential components of the development proc-
ess. 

Old-fashioned processes render design modifications the exception; in XP, change 
is the rule. New code structures, then, ought to be developed to back up this tendency. 
They should be high-level, concise, expressive, easy to understand, and easy to change. 

Traditionally, coding is seen as the process that takes a design to its ultimate detail. 
For this reason, sometimes the ideas underlying a piece of code, like a design pattern [1], 
get lost in the avalanche of details, context-related idiosyncrasies, and tweaks that the 
code has to provide to ensure proper functionality. There is an explanation for each line 
of code, but as a whole, the code blurs the design. Usually, developers help themselves 
with comments: "This class implements an Observer for objects of type Wi dget , which 
generate synchronous events of type Wi dget Changed." Or: "Class App is a Singleton 
that supports multithreaded access." Short of analyzing the code of App, there is no sim-
ple way to figure out whether App is a multithreaded Singleton or not, and, for that mat-
ter, whether it is correctly and efficiently implemented. Seasoned designers know what a 
multithreaded Singleton is; the problem is that this information resides in a chunk of code 
that must be dug out, instead of a clear declarative statement. 
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Also, consider the innumerable ways in which the Singleton object can be initial-
ized. Moreover, specialized techniques and recipes, like making a Singleton thread-safe 
[3] have limited portability. All these issues effectively limit one's ability to define a truly 
portable library that provides typical pattern implementations, thus missing an important 
reuse opportunity. 

Switching between two well-known variants of a design pattern is a nontrivial proc-
ess, because pattern variants don't map to code in a straight manner. For instance, chang-
ing the identifier type in a parameterized Factory Method [4] incurs cascading changes to 
the code and the data structures in the implementation space. This makes changes that are 
very simple and natural at design level to become unacceptably clumsy at coding level. 
Design and code evolve separately, and as the code dictates the actual behavior, usually 
the design is doomed to obsolescence. Hence the ironic adage: "The code is the design".  

New generic programming techniques [5] render coding with design patterns and 
advanced C++ idioms simpler, and change more affordable. They make it possible to ex-
press some common design patterns and idioms in as little as a couple of clear declarative 
statements. If the default behavior is not satisfactory, you don't have to restart from 
scratch - you can punctually override the defaults to support an open-bounded range of 
behaviors. 

These techniques map design much more directly to code, transforming the adage 
above into the more desirable: "The design is in the code". 

 
The Multiplicity of Design 
Much of the difficulty in implementing a software system is to choose between 

various competing solutions for each architectural issue, at all levels. The solutions are 
similar in the sense that they all ultimately solve (or promise to solve) the problem at 
hand. Yet, they sport different costs and tradeoffs and have distinct sets of advantages 
and disadvantages. In turn, each solution might have a large number of variants, and this 
multiplicity manifests itself at all levels of a design problem - from the highest to the 
lowest. 

Design patterns come with a systematic way of discovering and documenting sound 
design solutions. Idioms do the practically the same in the narrower context of a specific 
programming language. However, programmers, although they might use these higher-
level structures, must implement them in most cases starting from first principles. 

This problem exists because of the combinatorial nature of design. A design is a de-
liberate choice of a set of tradeoffs, out of a combinatorial space. For instance, a Single-
ton object can be single-threaded or multithreaded; allocated statically, on the free store, 
or in some implementation-specific memory space; and constructed with various numbers 
and types of parameters. All these features can be combined freely. In the presence of 
such open-ended options, it is hard to provide a library Singleton that's not too rigid. A 
flexible implementation should leave the user full freedom for tweaking any of its as-
pects, in addition to providing a good set of defaults. 

For implementing design structures and for working with design patterns, a library 
should help in the following ways. 

• Cope with the combinatorial nature of design with a reasonably small code 
base; 
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• Allow the user to combine tradeoffs and design decisions in any ways that make 
sense; 

• Validate the chosen set of tradeoffs at compile time; 
• Make the resulting code reasonably efficient; 
• Do not incur a penalty in space or runtime for options that are not used; 
• Make the resulting implementation small, terse, and easy to explain to peers; 
• Make it easy to change the design options after the fact. 
No built-in feature or idiom of traditional procedural, functional, or object-oriented 

programming supports these requirements. 
Procedural programming combines behaviors by using pointers to functions. Func-

tional programming uses function objects. Object-oriented programs use inheritance and 
containment in various forms. 

Each of these forms of coping with combinatorial behaviors has its own advantages 
and disadvantages. They all share the disadvantage of postponing to runtime things that 
should be performed at compile time. Most design decisions - like the threading model of 
a class - are immutable at runtime. Unnecessary dynamism wastes essential checking and 
optimization opportunities. 

Generic programming techniques, implemented herein with C++ templates, can 
provide combinatorial behaviors with a linear amount of code. The mixing and matching 
is checked at compile time. In addition, possible behaviors are open-ended, thus reducing 
the need to start a design implementation from scratch whenever a special circumstance 
occurs. 

 
Template Parameters as Design Constraints 
Originally, parameterized types were introduced in C++ to allow creation of generic 

type-safe containers. Needs such as creating fixed generic arrays led to the addition of 
non-type (integral and address) template parameters. Over time, to accommodate more 
and more powerful generic programming idioms, the template engine of the compiler 
evolved into an intricate pattern-matching engine, combined with the integral arithmetic 
calculator that was already available. 

Templates work at a meta-linguistic level; they form a little metalanguage on top of 
the rest of C++. Template code can be seen as guidelines to the compiler to generate ac-
tual code. The generated code is in non-templated C++. 

This viewpoint leads to the idea that templates can be used to help various tasks that 
fall in the contingency of compile time, like design itself. 

The elements controlling code generation are template parameters. Each template 
parameter is one degree of freedom on which generated code can vary. By fixing one of 
those parameters, you fix a dimension of variability, while the others can still control 
code generation on other dimensions. 

A description of this fertile view of templates can be found in [6]. 
Link this concept with perusing a design pattern that offers many design choices. 

Combined, the choices lead to a plethora of variants, making traditional reusable design 
impractical, complicated, and hard to optimize. 

However, if design choices are mapped to the template parameters of a template 
class, we can achieve combinatorial effect with a linear amount of well-chosen primi-



 4 

tives. The compiler generates and combines the appropriate primitives as requested at 
template instantiation time, and ignores the unused ones. 

Below is presented with examples a C++ idiom that helps in building flexible li-
braries of typical design implementations. 

 
Policy Classes 
Policy classes are implementations of punctual design choices. They are not in-

tended for standalone use; instead, they are inherited from, or contained within, other 
classes. 

A policy class defines a C++-specific interface. The interface consists of inner type 
definitions, member functions, and possibly member data definitions. In this respect, pol-
icy classes resemble traits classes [7]. Unlike most traits classes, policy classes can be 
either templated or not templated. They also are typically behavior-richer than traits 
classes. 

A policy class not only defines an interface; it also implements that interface. This 
sets an important distinction between policy classes and interfaces, without putting them 
to competition. Interfaces are a communication device; policy classes are an implementa-
tion device. In particular, a policy class can implement an interface. 

For example, each of the three policy classes below implements a locking policy 
that corresponds to a specific threading model. Each locking policy class defines an inner 
type called Lock . The policy states that for the duration of a Lock  object, operations on 
its host policy object are guaranteed to be atomic. This defines a simple, yet lucrative, 
threading model. 
 
cl ass Si ngl eThr eaded 
{  
publ i c:  
    c l ass Lock 
    {  
    publ i c:  
        Lock( Si ngl eThr eaded&)  { }  
    } ;  
} ;  
 
c l ass Cl assLevel Lockabl e 
{  
publ i c:  
    c l ass Lock 
    {  
    publ i c:  
        Lock( Cl assLevel Lockabl e&)  {  mut ex_. Acqui r e( ) ;  }  
        ~Lock( )  {  mut ex_. Rel ease( ) ;  }  
    } ;  
pr i vat e:  
    st at i c Mut ex mut ex_;  
} ;  
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cl ass Obj ect Level Lockabl e 
{  
publ i c:  
    c l ass Lock 
    {  
    publ i c:  
        Lock( Obj ect Level Lockabl e& obj )  :  m_( obj . mut ex_)  
        {  m_. Acqui r e( ) ;  }  
        ~Lock( )  {  m_. Rel ease( ) ;  }  
    pr i vat e:  
        Mut ex& m_;  
    } ;  
pr i vat e:  
    Mut ex mut ex_;  
    f r i end cl ass Lock;  
} ;  
 

The three policy classes defined above provide different threading models under the 
same interface. A class that wants to take advantage of locking inherits one of the poli-
cies. The actual policy class chosen depends on what kind of locking is needed, as shown 
below: 
 
t empl at e <cl ass Poi nt ee> 
cl ass Smar t Pt r  :  publ i c Cl assLevel Lockabl e 
{  
    . . .  
    Smar t Pt r & oper at or =( const  Smar t Pt r & ot her )  
    {  
        Lock guar d( ot her ) ;  
        . . .  per f or m oper at i on . . .  
    }  
pr i vat e:  
    Poi nt ee*  poi nt ee_;  
} ;  

 
The question arises, what advantage does Cl assLevel Lockabl e give us? For 

one thing, the parameter passed to Lock 's constructor is unused, and Smar t Pt r  could 
have used a static Mut ex  directly - a standard, easy to understand locking strategy. 

However, if Smar t Pt r  used a locking strategy directly, changing that strategy 
would have incurred changes to several Smar t Pt r  member functions. The quality of 
locking (for instance, correctly pairing the Acqui r e/Rel ease calls in the presence of 
early returns and exceptions) would have depended largely on Smar t Pt r 's implementer. 
Moreover, to figure out the actual locking strategy used, a reviewer must analyze the 
Smar t Pt r  implementation. 

The approach using a locking policy class has important advantages in flexibility 
and clarity: 
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• The locking strategy of Smar t Pt r  can be figured by simply looking at the 
Smar t Pt r  base class list. 

• All locking strategies have the same interface, which means that you can later 
change the locking model only by changing Smar t Pt r 's base class and re-
compiling Smar t Pt r . 

• The three locking policies are highly reusable classes that distill the threading 
aspect in defining a class, without interfering with other aspects. Therefore, 
locking policies can be carefully implemented, documented, and put in a library.  

Compilers commonly optimize out unused arguments and empty base classes, lead-
ing to a Smar t Pt r  implementation that's as efficient as a handcrafted one. 

However, in the setting above, the user cannot use a single-threaded Smar t Pt r  
and a multithreaded one in the same application. If at least one Smar t Pt r  is multi-
threaded, all Smar t Pt r  instantiations will pay the locking price. To solve this problem, 
we must make the locking policy a template parameter of Smar t Pt r . 
 
t empl at e <cl ass Poi nt ee,  
    c l ass Locki ngPol i cy = Si ngl eThr eaded> 
cl ass Smar t Pt r  :  publ i c Locki ngPol i cy 
{  
    . . .  
} ;  

 
The required interface of a locking policy is an inner class Lock . The semantics of 

Lock  is that it makes operations on an object atomic for the lifetime of a Lock  object. 
Any conforming implementation of the locking policy can be plugged in Smar t Pt r . 
The three classes presented provide default, often used, locking policies. 

 
Policy Classes With Generic Behavior 
The threading policy class defined above has semantics independent of the 

Smar t Pt r  or pointee type. In general, however, policy classes have generic behavior. 
For instance, imagine defining a null checking policy for our Smar t Pt r . Depend-

ing on the speed and the safety needed by the application, smart pointers might sport 
various checking levels. A fast Smar t Pt r  might implement no checking at all, while in 
some applications a null check before each dereference is desirable. 

A possible interface for a null checking policy class would consist of a unique func-
tion, Check . Because Check  might need the type and the value of the pointee object, 
the null checking policy is a template class (as opposed to a simple class like the thread-
ing policy is). The policy below throws a standard error object if the pointer passed to 
Check  is null. The text of the exception thrown contains the name of the pointee type, 
which makes it necessary to know the pointee type (Poi nt ee) in Check . 
 
t empl at e <cl ass T> 
cl ass Ful l Checki ngPol i cy 
{  
publ i c:  



 7 

    st at i c voi d Check( const  T*  p)  
    {  
        i f  ( p)  r et ur n;  
        t hr ow st d: : r unt i me_er r or (  
            st d: : st r i ng( " Nul l  poi nt er  of  t ype " )  + 
            t ypei d( T) . name( )  + "  det ect ed" ) ;  
    }  
} ;  
 

Generic (templated) policy classes have considerably broader flexibility than simple 
policy classes. In practice, only the simplest policies are non-templated. Most policy 
classes either are templates or have template member functions. 

If a class needs to enforce a policy class to be template, it can do this by requiring a 
template template parameter, as shown below. 

 
t empl at e 
< 
    c l ass Poi nt ee,  
    t empl at e <cl ass U> cl ass Checki ngPol i cy 
> 
c l ass Smar t Pt r  
{  
    . . .  
} ;  

 
This setting is particularly useful when Smar t Pt r  needs to use the checking pol-

icy with two types instead of only with Poi nt ee. Template template arguments also 
avoid the redundant repetition of the Poi nt ee type, as in the slightly uncomfortable 
Smar t Pt r <Wi dget ,  Ful l Checki ngPol i cy<Wi dget > >. 

 
Combining Multiple Policy Classes 
In isolation, policy classes provide the known advantages of a modular design and 

the potential of increased reuse. 
However, the true power of policy classes comes from their ability to combine 

freely. The client of a template class designed around policies can combine policies either 
by mixing and matching predefined policies, or by adding new ones. By combining sev-
eral policy classes in a template class with multiple parameters, one achieves combinato-
rial behaviors with a linear amount of code. In addition to increasing the amount of reuse, 
this property of policy classes makes them suitable as building blocks in higher level li-
braries. 

Let's combine a locking policy and a checking policy in the Smar t Pt r  class tem-
plate. 
 
t empl at e 
< 
    c l ass Poi nt ee,  
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    c l ass Locki ngPol i cy = Si ngl eThr eaded,  
    t empl at e <cl ass U> cl ass Checki ngPol i cy = 
        Ful l Checki ngPol i cy 
> 
c l ass Smar t Pt r  
    :  publ i c Locki ngPol i cy 
    ,  publ i c Checki ngPol i cy<Poi nt ee> 
{  
    . . .  
    Smar t Pt r & oper at or =( const  Smar t Pt r & ot her )  
    {  
        Lock guar d1( * t hi s) ;  
        Lock guar d2( ot her ) ;  
        . . .  per f or m copy oper at i on . . .  
    }  
    Poi nt ee& oper at or * ( )  
    {  
        r et ur n * oper at or - >( ) ;  
    }  
    Poi nt ee*  oper at or - >( )  
    {  
        Checki ngPol i cy<Poi nt ee>: : Check( poi nt ee_) ;  
        r et ur n poi nt ee_;  
    }  
pr i vat e:  
    Poi nt ee*  poi nt ee_;  
} ;  

 
The copying operation in oper at or = can be - and should be - defined by yet an-

other policy class. 
As suggested by the incomplete implementation above, in an implementation built 

around policy classes, the Smar t Pt r  template class itself becomes syntactic glue that 
dovetails together several policy classes. Each of these policy classes implements a spe-
cific aspect of the smart pointer behavior. 

Suppose we define three policies for locking (threading model) and four policies for 
checking. We already have twelve possible behaviors of Smar t Pt r . These behaviors 
are selected by the user of Smar t Pt r  with a single type definition. For instance, the 
type definition below defines a pointer to Wi dget  objects that support class level lock-
ing semantics and null checking with the asser t  macro (the Asser t Checked policy 
class, not shown, is trivial to implement). 

 
t ypedef  Smar t Pt r  
< 
    Wi dget ,  
    Cl assLevel Lockabl e,  
    Asser t Checked 
> 
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Wi dget Pt r ;  
 
Because class templates using policies - such as Smar t Pt r  - are likely to have 

many template parameters, almost any reasonable use thereof should be through a 
t ypedef . Type definitions are not only a convenience but also an abstraction in itself. 
In the space of designing with policies, type definitions are equivalent to function defini-
tions of traditional implementation. A practical consequence of concentrating policy se-
lections in type definitions is that the resulting type definitions provide unique points of 
maintenance. 

As multiple policies are defined and used with a class, the advantages of a policy-
based approach become more and more evident and even spectacular. The Smar t Pt r  
class template described in [5] uses six policies - for ownership, error handling, implicit 
conversion, array handling, threading, and storage. Although each policy is easy to im-
plement and needs little code, the policies combine to provide about 160 different behav-
iors, easily selectable by feeding appropriate template arguments to Smar t Pt r . It is 
very hard to deal with such a multitude of behaviors with traditional means. 

A policy-based class thoroughly documents the syntactic and semantic require-
ments for each of its policies. This way, users can develop and use their own policies, 
which add to the pre-built ones. This makes a policy-based approach very flexible and 
suitable even in the most particular applications. 

Because each policy in Smar t Pt r  implements a well-defined decision or con-
straint in the smart pointer design space, Smar t Pt r  users deal with high-level concepts 
such as error handling strategies or ownership strategies. In contrast, when developing a 
smart pointer starting from scratch, a programmer has to deal with all smart pointer de-
sign issues, plus a plethora of subtle syntactical issues. A handcrafted, more specialized, 
smart pointer is likely to be more rigid and less resilient to design changes than an instan-
tiation of a policy-based smart pointer. 

Policy-based implementations reach many of the goals stated in the introduction of 
this paper. Their use fosters a more natural mapping of design choices and constraints to 
implementation artifacts. Policies cope with the combinatorial nature of design with lin-
ear effort in an economic, organized manner. A policy-based class combines little select-
able structural and behavioral entities into larger structures. 

 
Conversions Between Policies 
An application can use the same policy-based class template (Smar t Pt r  in our 

example) instantiated with various design decisions. For instance, most smart pointers are 
checked upon each dereference, while some performance-critical code might use un-
checked smart pointers. 

From a compiler's perspective, two different instantiations of the same class tem-
plate are completely different types. However, for the program, certain conversions be-
tween smart pointers are sensible. For instance, an unchecked smart pointer should be 
convertible to a smart pointer with dereference checking. On the other hand, converting a 
multithreaded smart pointer to a single-threaded one is an error that should be signaled at 
compile time. 

Policy libraries can solve conversions in a simple and elegant way by initializing 
and assigning objects on a per policy basis. 
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For example, in addition to the copy constructor, Smar t Pt r  gets added a conver-
sion constructor that accepts a Smar t Pt r  instantiation with different template argu-
ments. 

 
/ /  I nsi de Smar t Pt r ' s c l ass def i ni t i on 
t empl at e <cl ass P,  c l ass L,  
    t empl at e <cl ass U> cl ass C> 
Smar t Pt r ( const  Smar t Pt r <P,  L,  C>& ot her )  
:  poi nt ee_( ot her . poi nt ee_)  
,  Locki ngPol i cy( ot her )  
,  Checki ngPol i cy<Poi nt ee>( ot her )  
{  
}  

 
The code above initializes Smar t Pt r  policy by policy, passing ot her  to each 

policy constructor. One of three things might happen: 
• The source policy is the same as the target policy. This is the case of a simple 

copy construction. 
• The source policy is incompatible with the target policy. In this case, the ini-

tialization is a compile-time error. 
• The source policy is convertible to the target policy. (For example, the source 

policy is derived from the target policy.) In this case, the initialization is legal. 
The third case leaves the policy developer the option on which other policies to 

consider compatible, and which to reject. For example, if Ful l Checki ngPol i cy  has 
a conversion constructor that accepts a NonChecki ngPol i cy , the Smar t Pt r  user 
will be able to construct a checked pointer from an unchecked one. 

 
Caveat 
Designing with policy classes is expressive and productive, but inherently compile-

time bound. Policy classes should be used for those aspects of a design that are fixed at 
runtime. Overusing policies might lead to excessive recompilation, code bloating, and 
rigid architectures.  

Also, using policies is fun, but decomposing classes and choosing the right interface 
for each policy is hard. The onus of choosing the most orthogonal policy set falls on the 
component library developer. 

A typical effect of choosing a non-orthogonal decomposition is the apparition of 
policies that depend on each other. A Smar t Pt r -related example: the storage policy - 
which deals with memory allocation and deallocation - is tied in unfortunate ways with 
the array policy, which deals with aspects like oper at or [ ] . Depending on the array 
policy, the storage policy must issue either a del et e or a del et e[ ]  call. 

Fortunately, library development is usually performed by a minority of experienced 
designers. From this perspective, policy-based libraries democratize good design prac-
tices. 

 
Conclusion 
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Implementing code based upon advanced idioms and design patterns is a tough en-
deavor when starting from first principles. The higher-level design structures do not map 
to similar code structures naturally, and ultimately the implementation blurs the simplic-
ity and the terseness of the design. 

The Policy Class C++ idiom fosters defining high-level classes in terms of other 
classes, each implementing one specific aspect - design choice, constraint - of a design. 
The high-level class becomes a template class, accepting each of the design constraints as 
a template parameter. 

The resulting setting allows library developers to define highly configurable high-
level classes without sacrificing performance or flexibility. Well-designed policy-based 
classes support many different behaviors by combining at compile time a small set of 
core policies. 

 
Bibliography 
[1] Gamma, E., et al. Design Patterns, Addison–Wesley, Reading, MA, 1995. 
[2] Design Patterns, pp. 207-217 
[3] Schmidt, D., et al. Double-Checked Locking. In Pattern Languages of Program 

Design 3, Addison–Wesley, Reading, MA, 1998, pp. 363–375. 
[4] Design Patterns, pp. 110 
[5] Alexandrescu, A. Design with C++ (tentative title), Addison–Wesley, Reading, 

MA, 2001 (in press). 
[6] Coplien, James O. Multi-Paradigm Design for C++, Addison–Wesley, Read-

ing, MA, 1999, pp. 39-43. 
[7] Alexandrescu, A. Traits: The else-if-then of Types, C++ Report, April 2000. 
 


