
Policy–Based Memory Allocation

Andrei Alexandrescu Emery Berger

October 11, 2005

One of the nice perks of doing hard work for next
to no money, activity also known as being a grad-
uate student, is that you get to rub shoulders with
researchers working on interesting problems. I’ve had
the pleasure of meeting in person Emery Berger and
also Kathryn McKinley, two of the authors (with
Benjamin Zorn) of “Composing High-Performance
Memory Allocators” [6] paper that I found highly
interesting for “I can’t believe I didn’t think of that”
reasons. But let’s start with the beginning.

One chapter of Modern C++ Design [2] is some-
what different than all others. Actually, very dif-
ferent. While the book is dedicated to creating ele-
gant, flexible, extensible designs, one chapter stands
out like a sore thumb by actually describing one
fixed, monolithic, rigid, awkward piece of software:
Loki’s small object allocator. Somehow I thought
that memory management is a low-level operation
and as such it doesn’t lend itself to the elegant ex-
ploits of policy–based design. At the same time, some
of the compiler–provided new/delete implementa-
tions were pretty bad at dealing with small objects,
so I felt there would be a need for something to fill the
void. So I sat down and wrote down an implemen-
tation that has portability as its only merit; other
than that, it’s not particularly performant, interest-
ing, or original. The main problem with Loki’s al-
locator, however, does not lie in its implementation
(which, by the way, has been entirely rewritten by
Rich Sposato, to the end of greatly improving its per-
formance), but in its design, which is not configurable
nor extensible—just a few monolithic classes, much
like what you’d expect in the bad ol’ days.

However, about at the same time, Emery Berger
and others were experimenting with a mixin–based

memory allocator for C++ that is at the same time
highly efficient (rivaling the best general–purpose
allocators out there), highly customizable (rivaling
the best special–purpose allocators too), and highly
portable by virtue of its customizable design! As soon
as I became acquainted with that research, I realized
how the chapter on memory allocation in Modern
C++ Design should have looked like.

But before we delve into the fascinating topic of
configurable memory allocation, let’s tie a few knots
with past comments received via email.

1 Mailcontainer

I wrote the sidebar “Memory: More Than Just Any
Resource” of the last Generic〈Programming〉 install-
ment with the serene resignation with which Galileo
Galilei must have said his famous “Eppur si muove.”
“And yet garbage is collectable,” I mumbled into
my three–days beard when submitting the article for
publication. The expected outcome was that the op-
ponents of garbage collection will exemplarily mortify
me via an endless flow of angry emails; however, they
must’ve chosen to boycott me, because I haven’t got-
ten even one email of protest.

Ivan Godard sent me an email on the subject of
Observers [3, 4]. That message is so smart, and had
me look up words in the dictionary so often, that I’ve
decided to quote it almost in entirety, at the risk of
blowing up the size of this article:

Your difficulties with attach and de-
tach while in the middle of notification are
canonical concurrency problems, and can be
dealt with in the usual way. The (only rea-

1

sonable?) semantics for Observer is to see
subject, observer and event as three inde-
pendent and asynchronous processes, with
a time stream localized at subject. That
is, an observer cannot directly determine
the time relation between its attempt to
attach and the occurrence of a particular
event because the event is not within the
observer’s horizon. Only the subject, which
receives both events and requests to attach,
can time-order these.

Consequently a putative observer will
see some sequence of events which (in the
subject’s time frame) begins some time af-
ter the attempt to attach and ends some
time after the attempt to detach. The se-
quence is guaranteed to be ordered (in sub-
ject time) and dense, but where it starts and
where it ends is not known. Of course, if
the observer is itself a source of events and
the channel between observer and subject is
order-preserving then the observer can en-
force somewhat more stringent bounds on
how far the observed sequence extends into
the subject’s past or subject’s future by in-
jecting an event just before the attach or
just after the detach.

So much for relativity theory. In prac-
tice, this implements naturally by consider-
ing the attempt to attach and the attempt
to detach as being themselves events. The
subject enqueues an event (including an at-
tach/detach) on an action list, and walks
the list of observers applying each event in
turn to each observer. Both observers and
events are timestamped; a simple counter
will do. Events are discarded when there
are no observers with lesser stamps. The
observer list is pre-seeded with an observer
(the subject itself) that is watching for at-
tach events and which adds the observer to
the observer list. All observers are watch-
ing for their own detach events and remove
themselves when the subject applies the cor-
responding detach event. [. . .]

Most of the difficulties you encountered

appear to be a consequence of the assump-
tion that attach and detach were somehow
global and absolute, rather than just an-
other event in the sequence of events en-
countered by the subject. Remove that
mistaken idea and your invalidated-iterators
problems disappear.

This view of attachment and detachment as simple
events is very interesting. This generalization would,
however, make it harder to define policies that lead to
the simple implementations in the article. Let’s ad-
mit, such simple solutions are widely used and have
their place in spite of their risks and limitations. If
anyone would like to embark on defining a policy-
based design for such a “relativistic” Observer, and
if the design does allow efficient simple implemen-
tations as well, I’d be highly interested. Do contact
Ivan at igodard@pacbell.net with questions (unless
you’re him).

Brian Wood comments on the “Walking Down
Memory Lane” article:

While you introduce auto_vector, you
didn’t mention either of the ptr_vector im-
plementations. Thorsten Ottosen has writ-
ten an interesting article about ptr_vector
in the October issue of Doctor Dobb’s Jour-
nal. auto_vector and the ptr_vector by
Ottosen are obviously closely related, but
also have differences. Some mention to
ptr_vector and the differences would have
been helpful I think.

Anyway, from my own experience, I
agree with you that things like auto_vector
and ptr_vector are often preferable to
vector<shared_ptr<T> >.

Great, thanks Brian—and readership, consider
yourself tipped on where to look for more material
related to scoped memory management.

2

2 Memory Allocation: One
Size Doesn’t. . . you know

Today’s general–purpose memory allocators have
reached reasonable speed and low fragmentation for a
large category of programs. However, in the memory
allocation realm, a little information can go a long
way. Application–specific information about alloca-
tion patterns helps implementing specialized memory
allocators that heavily improve the bottom line of
many high–performance applications. Sometimes as
little intel as “blocks of size 80 are allocated more of-
ten than blocks all other sizes,” when properly used
(as we’ll discuss soon), can incredibly improve the
bottom line runtime of a program. While general-
purpose allocators have average overheads in the hun-
dreds of cycles, a good customized memory allocator
can require as few as half a dozen cycles.

That’s why many high–profile, high–performance
applications (gcc, Apache, and Microsoft’s SQL
Server to name just a few) implement their own mem-
ory allocator. A good idea is, then, to generalize such
good specialized allocators and put them in a library.
But “generalization” and “specialization” are in ten-
sion: your application might have different alloca-
tion patterns that would require yet another behavior
from your allocator. What to do?

But wait, there’s more. If we do devise a method
to easily create special–purpose memory allocators,
we can go full–circle and define a general–purpose al-
locator as a combination of wisely chosen special–
purpose allocators. If the resulting general–purpose
allocator compares favorably with the existing mono-
lithic general–purpose allocators, then the design is
valid and useful.

Emery’s team worked towards that idea, leading to
their library HeapLayers (http://heaplayers.org).
To define configurable allocators, they used mixins
(also known as Coplien’s curiously recurring pattern
in the C++ community): defining classes with pa-
rameterized base. Each layer defines only two mem-
ber functions, malloc and free.

template <class T>
struct Allocator : public T {
void * malloc(size_t sz);

void free(void* p);
// system-dependent value

enum { Alignment = sizeof(double) };
// optional interface

size_t getSize(const void* p);
};

Each layer implementation would get a crack on
allocation and deallocation, possibly (and likely) re-
questing memory from its base class. A “self–
contained” allocator sits at the very top of the
hierarchy—one that forwards requests straight to the
system’s new and delete operators, malloc and
free functions, and the such. In HeapLayers termi-
nology, these are the top heaps. To exemplify (careful
with the qualifications so we don’t enter infinite re-
cursion):

struct MallocHeap {
void * malloc(size_t sz) {
return std::malloc(sz);

}
void free(void* p) {
return std::free(p);

}
};

Top heaps can also be implemented around non-
standard system calls for getting memory, such as
UNIX’s sbrk.

The getSize function has a special status. Not
everybody is going to need it, so defining it is optional
(if you combine the wrong layers, the compiler will
tell you). If it does, all you have to do is to insert a
layer that stores the block size and offers the getSize
primitive:

template <class SuperHeap>
class SizeHeap {
union freeObject {
size_t sz;
double _dummy; // for alignment.

};
public:
void * malloc(const size_t sz) {
// Add room for a size field.

freeObject * ptr = (freeObject *)
SuperHeap::malloc(sz +

3

sizeof(freeObject));
// Store the requested size.

ptr->sz = sz;
return ptr + 1;

}
void free(void * ptr) {
SuperHeap::free((freeObject *) ptr - 1);

}
static size_t getSize (const void * ptr) {
return ((freeObject *)ptr - 1)->sz;

}
};

SizeHeap is the perfect illustration of how to im-
plement a useful layer that hooks into its base’s
malloc and free functions, does something ex-
tra, and returns “doctored” results to the client.
SizeHeap does its work by allocating extra memory
to store the block size, with the appropriate cautions
(the union) to stay as immune as possible to the
alignment issue. The client gets access to the mem-
ory right next to that extra data. It’s not hard to
imagine building a debug heap that pads the mem-
ory block before and after with some bytes filled with
a particular pattern, and then verify for overruns
by checking whether the pattern has been preserved.
In fact, that’s exactly what HeapLayers’ DebugHeap
layer does. Pretty neat.

But wait, something’s suboptimal here. Some sys-
tems already offer a primitive to compute the size
of a mallocated block. On those systems, SizeHeap
would actually waste space. In that case (for exam-
ple, on Microsoft Visual C++), you wouldn’t need
SizeHeap in conjunction with MallocHeap, because
MallocHeap would implement getSize out of the
box:

struct MallocHeap {
... as above ...
size_t getSize(void* p) {
return _msize(p);

}
};

But wait, something’s still suboptimal here. Re-
member, we’re counting cycles. What if a system’s
malloc documentation states that the block size is

stored in a word prior to the actual block? In that
case, SizeHeap would still waste memory by storing
yet another word next to the one already planted by
the system. What’s needed is a layer that implements
getSize just the way SizeHeap does, but doesn’t
hook malloc and free. That’s why HeapLayers seg-
regates the SizeHeap shown above in two:

template <class Super>
struct UseSizeHeap : public Super {
static size_t getSize(const void * ptr) {
return ((freeObject *) ptr - 1)->sz;

}
protected:
union freeObject {
size_t sz;
double _dummy; // for alignment.

};
};

template <class SuperHeap>
class SizeHeap

: public UseSizeHeap<SuperHeap> {
typedef typename

UseSizeHeap<SuperHeap>::freeObject
freeObject;

public:
void * malloc(const size_t sz) {
// Add room for a size field.

freeObject * ptr = (freeObject *)
SuperHeap::malloc(sz +
sizeof(freeObject));

// Store the requested size.

ptr->sz = sz;
return (void *) (ptr + 1);

}
void free(void * ptr) {

SuperHeap::free((freeObject *)ptr - 1);
}

};

Now SizeHeap always (correctly) adds the
UseSizeHeap layer and exploits its getSize imple-
mentation, while UseSizeHeap can also be used in
other configurations—a very elegant design.

4

3 A useful example:
FreelistHeap

Let’s face it, so far we kind of set up the stage. We
do have an architecture, but no clue on how to write
an efficient specialized allocator using layers. A pop-
ular and “most bang for the buck” strategy is the
following:

1. Collect stats about your application’s allocation
counts for each size;

2. For the most often asked size (call it S), maintain
a private singly-linked list;

3. Memory allocations for S return memory from
that list if possible, or else from the default allo-
cator (in a layered architecture, from the supe-
rior layer);

4. Memory deallocations for blocks of size S push
the block into the list.

A refinement of the above would be to use the same
freelist for a range of sizes S1 to S2, at the cost of
some slack memory. The needed singly-linked list
operations are O(1) and actually only a few instruc-
tions. In addition, the pointer to the next item can be
stored in the actual block (the block stores no useful
data—it’s always a freed block!) so there’s no extra
memory required per block. Given that most appli-
cations’ allocation size distribution is highly skewed,
free lists are any allocator implementer’s indispens-
able utensil.

Let’s implement a layer that implements a free list
for a range of statically-known sizes S1 to S2.

template <class Super, size_t S1, size_t S2>
struct FLHeap {

~FLHeap() {
while (myFreeList) {
freeObject* next = myFreeList->next;
Super::free(myFreeList);
myFreeList = next;

}
}
void * malloc(const size_t s) {

if (s < S1 || s > S2)) {
return Super::malloc(s);

}
if (!myFreeList) {
return Super::malloc(S2);

}
void * ptr = myFreeList;
myFreeList = myFreeList->next;
return ptr;

}
void free(void * p) {
const size_t s = getSize(p);
if (s < S1 || s > S2) {
return Super::free(p);

}
freeObject p =
reinterpret_cast<freeObject *>(ptr);

p->next = myFreeList;
myFreeList = p;

}
private:
/// The linked list pointer we embed in the freed objects.

class freeObject {
public:
freeObject * next;

};
/// The head of the linked list of freed objects.

freeObject * myFreeList;
};

Now you can define a custom heap like this:

typedef FLHeap<
SizeHeap<MallocHeap>,
24,
32>

SmartoHeapo;

SmartoHeapo will be superfast for allocation sizes
between 24 and 32, and pretty much the same for all
other sizes.

4 In–Place Resizing

Many a C++ programmer has been dreaming for
a standard primitive to reallocate memory in place.

5

You see, C has realloc, which can do in–place re-
allocation if it can, or use memcpy when it comes
about copying data around. But memcpy doesn’t work
for C++ objects, so realloc doesn’t work for C++
object, so any sort of renew primitive can’t be im-
plemented using the standard C allocator. So C++
doesn’t have renew [1].

To give you an idea of the improvements that in-
place reallocation can bring to C++ code, consider:

const int n = 10000;
Vec v;
for (int i = 0; i < n; ++i)
v.push_back(0);

Howard Hinnant of Metrowerks has been working
on implementing in-place expansion for CodeWar-
rior’s standard library implementation. In Howard’s
own words:

I currently have a vector<T,
malloc_allocator<T> > that does [. . .]
expand-in-place based on N1085 [7]. It
blows the doors off a built-in C-like array!
:-) When Vec is a vector<int> without
expand-in-place:

0.00095674 seconds
When Vec is a vector<int> with

expand-in-place:
0.000416943 seconds
The timings should only be trusted to

2 significant digits. But rest assured, I’ve
done the work to secure those two digits.
We are not looking at an anomaly here.

Given the benefits of in–place resizing and that
each heap layer has control over its own allocation al-
gorithms and data structures, let’s augment the heap
layer interface:

template <class T>
struct Allocator : public T {
void * malloc(size_t sz);
void free(void* p);
size_t expand(void* p, size_t min, size_t max);

};

The semantics of expand is, try to expand the block
pointed to by p to the largest size possible between

min and max. Then return whatever size you could
expand the memory to, or zero if no expansion was
possible. Fortunately, things can be arranged such
that a layer has to fuss about the expand routine
unless it wants to. That works if all top allocators
inherit the following little class:

struct TopHeap {
size_t expand(void*, size_t, size_t) {
return 0;

}
// not intended for standalone usage

protected:
~TopHeap() {}

};

5 Conclusion

Configurable memory allocation is, as Emery’s re-
search has shown, a practical, all–in–one alterna-
tive to both specialized and general purpose allo-
cators. Emery’s numbers (refer to the paper [6]
for details) consistently show that allocators created
with HeapLayers perform just as good or better than
monolithic allocators, be they general–purpose or
specialized. Moreover, HeapLayers’ layered architec-
ture encourages easier experimentation, simpler de-
bugging, and unparalleled extensibility. Instead of
being an oddball chapter of Modern C++ Design,
memory allocation should have been one of the best
success stories of policy–based design.

Table 1 shows a relevant subset of the layers im-
plemented in HeapLayers. There would be a lot of
goodies to discuss, such as the locked heaps for mul-
tithreaded operations, the STL adapter, the various
utility heaps, or how the layers can be combined to
create a general–purpose allocator. But wc warns us
that “the mind can only enjoy what the butt can en-
dure,” so it’s about time to shut down—without for-
getting to release the memory in destructors. Happy
coding.

6 Acknowledgments

Will go here.

6

A Library of Heap Layers
Top Heaps

mallocHeap A thin layer over malloc
mmapHeap A thin layer over the virtual memory manager
sbrkHeap A thin layer over sbrk (contiguous memory)

Building-Block Heaps
AdaptHeap Adapts data structures for use as a heap
BoundedFreelistHeap A freelist with a bound on length
ChunkHeap Manages memory in chunks of a given size
CoalesceHeap Performs coalescing and splitting
FreelistHeap A freelist (caches freed objects)

Combining Heaps
HybridHeap Uses one heap for small objects

and another for large objects
SegHeap A general segregated fits allocator
StrictSegHeap A strict segregated fits allocator

Utility Layers
ANSIWrapper Provides ANSI-malloc compliance
DebugHeap Checks for a variety of allocation errors
LockedHeap Code-locks a heap for thread safety
PerClassHeap Use a heap as a per-class allocator
PHOThreadHeap A private heaps with ownership allocator [5]
ProfileHeap Collects and outputs fragmentation statistics
ThreadHeap A pure private heaps allocator [5]
ThrowExceptionHeap Throws an exception when the parent heap

is out of memory
TraceHeap Outputs a trace of allocations
UniqueHeap A heap type that refers to one heap object

Object Representation
CoalesceableHeap Provides support for coalescing
SizeHeap Records object sizes in a header

Special-Purpose Heaps
ObstackHeap A heap optimized

for stack-like behavior and fast resizing
ZoneHeap A zone (“region”) allocator
XallocHeap A heap optimized for stack-like behavior

General-Purpose Heaps
KingsleyHeap Fast but high fragmentation
LeaHeap Not quite as fast but low fragmentation

Table 1: A library of heap layers, divided by category.

7

References

[1] Andrei Alexandrescu. Generic〈Programming〉:
Typed Buffers (III). C++ Experts Online, De-
cember 2001. Available at http://erdani.org/
publications/cuj-12-2001.html.

[2] Andrei Alexandrescu. Modern C++ Design.
Addison-Wesley Longman, 2001.

[3] Andrei Alexandrescu. Generic〈Programming〉:
Prying Eyes: A Policy-Based Observer (I). C++
Users Journal, April 2005.

[4] Andrei Alexandrescu. Generic〈Programming〉:
Prying Eyes: A Policy-Based Observer (II). C++
Users Journal, June 2005.

[5] Emery D. Berger, Kathryn S. McKinley,
Robert D. Blumofe, and Paul R. Wilson. Hoard:
A scalable memory allocator for multithreaded
applications. In International Conference on Ar-
chitectural Support for Programming Languages
and Operating Systems (ASPLOS-IX), pages
117–128. Cambridge, MA, November 2000. URL
citeseer.ist.psu.edu/berger00hoard.html.

[6] Emery D. Berger, Benjamin G. Zorn, and
Kathryn S. McKinley. Composing High-
Performance Memory Allocators. In SIG-
PLAN Conference on Programming Language
Design and Implementation, pages 114–124,
2001. URL http://citeseer.ist.psu.edu/
berger01composing.html.

[7] Howard Hinnant. Proposal to augment the
interface of malloc/free/realloc/calloc. See
http://www.open-std.org/jtc1/sc22/wg14/
www/docs/n1085.htm.

8

