(o))
£
£
£
©
} -
(@)
(o]
S
(a
A
Q
"=
()
c
<)
o
\"

he main topic of this installment is re-

source management—in particular,

how you should approach it; what op-
tions C++ offers; in what ways memory is
different from other resources; and how all
that influences the way you approach your
designs. We’ll provide some code, too, but
ideas, fundamentals, and principles are the
main gist of today’s discourse. This discus-
sion was prompted by an e-mail exchange
with Bartosz Milewski, C++er, Seattleite, and
chef extraordinaire (I kid you not; Bartosz
cooked the best meal I’ ve ever eaten, and I’ ve
been places). We’ve had some divergence of
opinions, and compared to arm wrestling, du-
eling in Pioneer Square at noon, or harassing
one another until one of us develops an eat-
ing disorder—well, writing an article togeth-
er seemed to be the most attractive option.
But first, we’ll discuss an overflowing mail-
container, and in particular the overdue com-
ments from readers about policy-based Ob-
server implementations [2, 3].

Mailcontainer

I'm sure many pop music authors would agree
that you never know what people are going
to like, but I was still surprised at the sheer
amount of positive e-mails following
Generic<Programming>’s treatment of
typesafe formatting, a subject that, let’s face
it, falls in the “yet another” category. There
was much heartwarming praise; with care and
proper rationing, that could last me a lifetime.
Many thanks to all who’ve taken the time to

Andrei Alexandrescu is a graduate student in
Computer Science at the University of
Washington and author of Modern C++
Design. He can be contacted at andrei@
metalanguage.com. Bartosz Milewski is a
software architect at Reliable Software and
author of C++ in Action. He can be reached
at bartosz @relisoft.com.

46

Andrei Alexandrescu and Bartosz Milewski

Walking Down Memory Lane

The trade-offs between scoped versus shared ownership

write—such responses, and not money, are
any author’s most wanted reward (don’t tell
this to CUJ accounting though, lest they cut
all author honorariums and hire an odist
instead).

At the end of my policy-based Observer
treatment, I asked people to send me more
ideas and designs. Here they are. A word of
warning, though: If you haven’t read the
pertinent articles [2, 3], then you may want
to skip to the end of this section, because it
will otherwise read like: “Boring. Boring.
Boring boring. Incredibly boring. Can’t
believe I didn’t turn the page yet. Boring
boring boring.” Randy Pitz writes:

We use a different Observer implementation that
we have designed to provide typesafe events,
where each event is a unique type containing nest-
ed types for typesafe callbacks. The subjects de-
rive from a template base using the curiously re-

curring template pattern, and declare typedefs for
each event.

// A Subject
class Foo :
public:
typedef Eventl<l, int> Eventl;
typedef Event2<2, string, int>
Event?2;
typedef Eventl<3, Foo*> Event3;
typedef Event0<4> Event4;
void SendEvents() {
sendEvent (Event1(), 5000);
sendEvent(Event2(), name_, 33);
sendEvent(Event3(), this);
sendEvent (Event4());
}

public Subject<Foo> {

I

Observers register, deregister, and receive up-
dates in the following way:

// An Qbserver
class Bar {
public:
Bar(Foo* foo) : foo_(foo) {
foo->register(Foo::Eventl(),
this, &Bar::0nEventl);

® C/C++ Users Journal e www.cuj.com

foo->register(Foo::Event2(),
this, &Bar::0nEvent?2);
foo->register(Foo::Event3(),
this, &Bar::0nEvent3);
foo->register(Foo::Eventd(),
this, &Bar::0nEventd);
}

~Bar() {
foo_->unregister(Foo::Eventl(),
this, &Bar::0nEventl);
foo_->unregister(Foo::Event2(),
this, &Bar::0nEvent2);
foo_->unregister(Foo::Event3(),
this, &Bar::0nEvent3);
foo_->unregister(Foo::Eventd(),
this, &Bar::0nEventd);
}

void OnEventl
void OnEvent2
void OnEvent3
void OnEventd
private:
Foo* foo_;
I

int n) {}

string s, int n) (}
Foo* ) {}

) {3

While not being totally satisfied with the im-
plementation, it does provide for typesafe call-
backs and implements removal through an oblit-
eration technique similar to what you mention in
the article. For removal, observers are replaced
with null and sets a dirty flag, then after all up-
dates complete, the subject checks the dirty flag
and then updates the data structure.

It turns out I’'m not that happy with the
implementation either. (If that helps, Ive never
been totally happy with my
implementations. Who is?) Registration during
construction and unregistration during
destruction are two sides of the same risky
business: virtual calls that aren’t really virtual.
If a class Baz inherits Bar, the pointer-to-member
expressions formed during Bar’s constructor
will encode Bar’s implementations, not the
overrides that Baz diligently planted. Result?
Bar’s OnEvent functions will be always called.

own

October 2005



Andrei Alexandrescu and Bartosz Milewski

Luke Wagner writes:

The idea of the solution is to take advantage of the fact that while we are
iterating through the vector of observers, any change to this list comes
from another friendly member function that can cooperate and help out
our iteration:

class Subject {
vector<Observer*> observers_;
int iter_; // co-op index

public:
void NotifyAl1() {
iter_ = 0;
for(; iter_ < observers_.size();
+iter )

observers_[iter_]->Update();
}
void Detach(Observer* dead) {
size_t i =0;
while (i < observers_.size())
if (observers_[i] == dead) {
if (i <= iter.)
—iter_;
observers_.erase(
observers_.begin()+i);

void Attach(Observer* add) {
/* Tike normal */
}
I

But yours truly wrote in [2]: “A solution that is solid as well as
efficient is to store the iterator as a member in the BareboneSubject
class, and then make sure that the Attach and Detach functions update
it properly.” The code above is an incarnation of that sketch. Thanks
for writing, Luke.

Chad Parry caused me a deep depression that lasted, like, almost
a minute, by writing:

I'am kind of unsatisfied with the hierarchal policy idea that you proposed in
CUJ. This idea looks like it would work better where the Chain of Command
design pattern is needed. For example, the ObserverID could be implemented
as a chain of brokerage policies or observer proxies. One policy could main-
tain a reference count to the actual observer object. Another policy could build
on top of that to accumulate return values from the event handlers. I feel like
the design you proposed has a “fatal flaw "—the only interesting class is Bare-
boneSubject. Subjects that are built on top of that have very limited ways in
which they can modify the base subject’s behavior. They can’t even redefine
the ObserverID type that is stored in the private vector. And trying to add poli-
cies to BaseSubject to solve this only resurrects the original problem, which
is that various policy decisions are unorthogonal and so the policy imple-
mentations end up being tightly coupled.

Indeed, a policy with only one interesting implementation is a
clear sign of a failed attempt at policy-based design, and that’s an
astute point. However, I don’t think that’s the case with
BareboneSubject; for one thing, the article discussed itself [3] presents
ClosedNotify on top of any Subject-compliant class, including
BareboneSubject, thus invalidating the claim. And then,
BareboneSubject itself uses linear search and some quite particular
design decisions, which I'm sure can be improved by designing

October 2005

<Generic>Programming

another class inheriting BaseSubject that can spin off an entire
subhierarchy. The claim that “they can’t even redefine the ObserverID
type that is stored in the private vector” is invalid as well; this is not
dynamic polymorphism. You can inherit BareboneSubject, use its
ObserverID internally, and define your own ObserverID to export to
clients as you please. Don’t forget, this is template-land where things
are bound at compile time. Intuitively, the last claim “various policy
decisions are unorthogonal ” has some merit, otherwise the design
would be perfect and I'd be entirely happy with it, which I said I
wasn’t. But such a claim must always be substantiated by presenting
a more orthogonal design, otherwise we might conclude only that
the problem is wicked. In a subsequent e-mail, Chad does send an
idea based on hooks inserted before and after each event notification.
That allows for quite an elegant implementation:

template<typename Successor>

struct ClosedNotify : public Successor
{

private:

bool closed;
protected:
ClosedNotify() :
closed(false) {
}
using Successor::DefaultAdvice::Advice;
void Advice(NotifyExecution, Aspects::Before) {
if (closed)
throw std::Togic_error("Notify closed");
closed = true;
}
void Advice(NotifyExecution, Aspects::After) {
closed = false;
}
void Advice(AttachExecution, Aspects::Before) {
if (closed)
throw std::Togic_error("Notify closed");
}
void Advice(DetachExecution, Aspects::Before) {
if (closed)
throw std::Togic_error("Notify closed");
}
~ClosedNotify() { }
I

That’s a nice variant I believe; it allows more power at the cost of
lifting some structure, which can be good if the structure is too
imposing. AOP implemented “by hand” is more like the template
method, and is not too bad if only done inside the library. Otherwise,
it gets boring pretty soon.

Richard Bowey writes:

Thank you for Loki and the Observer articles; they are ace. I am investigat-
ing the idea of using a Functor as the observer call back rather than a call to
a virtual Update method. [...] The client gains flexibility but needs to hold an
ID for each call to Attach in order to detach.

The possibility of using a Functor eliminates the need for the client to de-
rive from an Observer base class. However, the main problem I found was
that Functor objects are not comparable. The solution I chose was to have the
client supply a FunctionID as well as a Function. It would be possible to have
the client supply a pointer to a functor. In a previous attempt, I made the sub-
ject generate the FunctionID. It would be possible for Attach to return the func-
tion ID in a boost::optional<FunctionID>; this could be used as a bool, but
additionally could be used to get the FunctionID.

e C/C++ Users Journal e www.cuj.com e 47



<Generic>Programming

Good ideas. If anyone has a better solution for comparing functors,
please send them in. Finally, Nigel Megitt sends (while describing a
larger design that, alas, is proprietary so he’d have to kill me if I shared
it) an interesting example where the unrecommended active observation
could be useful:

One feature that I think is nice, though I suspect there are people who would
feel the opposite, is that the same implementation can be (and has been) used
for a Visitor pattern: The event can have attributes that can be modified by
the observers registered against it. I used this to implement a “veto” system
for working out whether it’s okay to close a window in a GUI: Things that
have an interest in preventing or knowing about impending closure register
an action that may increment a veto counter. When the Subject has finished
the notification, it checks the state of the message it fired and can if necessary
avoid closing the window.

Resource Management Fundamentals

Don’t get scared by “management.” Borrowed from operating
systems, the term “resource management” is (for the purposes of
this article) the totality of tools and techniques dedicated to handling
limited resources within a program: memory, file handles, mutexes,
sockets, database connections, and so on. Bartosz and I got to talk
quite a bit about resource-management techniques; Bartosz is in the
same situation that many LISP and Smalltalk programmers are: He
is in the possession of a very useful toolset, and is amazed and
frustrated at how others fail to see its obvious merits and continue
doing things the stone age way. In short, Bartosz’s thesis is that a
lot, practically nearly all, of resource management can be done with
just scoped ownership. Moreover, in Bartosz’s experience, when
used with discipline, auto_ptr (and an artifact written by Bartosz,
auto_vector) would be good enough tactics to implement scoped
ownership. But let’s not get ahead of ourselves. What is scoped
ownership, and what other resource ownership schemata would be
out there?

At the first level of detail, we can distinguish between automatic
and manual resource management. Automatic resource management
is done under the covers without any required action from the
programmer; manual resource management is pretty much everything
else. Garbage collection is a notorious form of automatic memory
management (regions [6] would be another). Traditionally, automatic
management doesn’t work well with scarce resources because it tends
to impose a “lazy” release schedule.

Within the manual resource management realm, we identify:

Scoped ownership: in essence, scopes it’s own resources. Ownership
can never be shared. Ownership can only be passed across scopes by
manipulating the corresponding scoped objects. Because of such
restrictions, scoped ownership cannot express all ownership patterns.
The poster boy of scoped management is auto_ptr.

Shared ownership: several objects own one resource cooperatively.
Tracking owners is done semiautomatically through a number of
means, notably smart pointers with reference counting. Reference
counting is fully expressive, meaning that it can model any ownership
pattern (with the notable exception that it cannot release cycles).
Shared ownership exacts a cost in performance. Also, the increased
expressiveness means less structure and more opportunity to make
mistakes, so scoped management is preferable if it fits the bill. Various
flavors of smart pointers envy the position of poster boy of shared
ownership.

48 e C/C++ Users Journal e www.cuj.com e

Andrei Alexandrescu and Bartosz Milewski

“By-attention” ownership: the ownership patterns are not enforced
in any way; the program relies on full-bore manual tracking of resources
(such as pointers and sockets) using unstructured handles. The sole
guarantee of correctness is provided by the programmer’s relentless,
tireless, and immensely scalable attention. Prayer, voodoo, and sheer
luck have reportedly helped in select cases.

Scoped Resource Management
Now, if you stood in New York’s Grand Central Station asking random
people what they think of the following code:

Foo * p = new Foo;

what do you think they’d say? Most experienced programmers we
asked agreed that such code is unacceptable. They differed, however,
in the ways they proposed to fix it. Some suggested using an auto_ptr:

std::auto_ptr<Foo> p(new Foo);
Others mentioned some flavor of smart pointer:

smart_ptr<Foo> p(new Foo);

What are the various ways these two could be used and what are
the relative merits of each? Obviously, this is not a matter of
contemplating one line of code, but a pervasive issue. Two things
became clear though: auto_ptr is underused because it is considered
tricky and suspicious; smart_ptr is underused because of performance
worries. That unfortunately leaves too many cases where neither is
used, which is the worst case of all because it takes you straight to
“by-attention” resource management.

Searching your code for occurrences of the keyword delete is a
good way to check your program’s resource management patterns. If
you need more than the fingers of one hand to count your deletes,
that’s a sign that you’re relying on “by-attention” ownership too much.
The foolproof way to make sure that a heap object is deleted is to
make sure it is properly owned by a dedicated class such as a smart
pointer or a smart container. Such classes are generic, hence they
drastically reduce the total number of calls to delete. Because objects
might hold all other kinds of resources and dispose of them in their
destructors, looking for delete actually gives a good indication about
the way a program manages not only memory, but resources in general.

As the sidebar “Memory: Not Just Any Resource” mentions, a
possible path towards improving resource management is to limit
expressiveness. For example, if you commit to holding the resource
within a well-defined scope, simple automatic variables will work out
of the box. If you want to pass ownership of a resource across scopes,
such as returning a resource from a function, auto_ptr is there to help.
Passing ownership is a possible grace to a complicated hack known
as the Colvin-Gibbons trick[1]. However, that hack opens a big
semantic hole, which newly proposed language changes promise to
close satisfactorily. But that all deserves its own section.

auto_ptr is Dead, Long Live unique_ptr?

What looks like a duck, quacks like a duck, and chops your leg off
in one bite? A polyglot alligator in disguise, of course. A class that
implements surprising semantics with familiar syntax is just as vicious.
Take auto_ptr, for example. All objects in the C++ Standard Library
and most other libraries, if they ever allow copying and assignment,

October 2005



Andrei Alexandrescu and Bartosz Milewski

implement them to mean, well, copy and assign. More so, of all user-
defined functions ever, there is exactly one function that the compiler
assumes what it’s going to do, and that is the copy constructor.
Paragraph 15 of section 12.8 of the C++ Standard says:

Whenever a temporary class object is copied using a copy constructor, and
this object and the copy have the same cv-unqualified type, an implementa-
tion is permitted to treat the original and the copy as two different ways of re-
ferring to the same object and not perform a copy at all, even if the class copy
constructor or destructor have side effects [...]

auto_ptr famously breaks expectations by implementing copying
and assignment to wipe the source away:

auto_ptr<T> pl(new T);
auto_ptr<T> p2(pl); // nullifies pl
auto_ptr<T> p3;
p3 = p2; /] nullifies p2

With discipline and attention, such surprises can be avoided,
although automatically generated copy constructors all too eagerly
implement surprising semantics if you hold auto_ptr member variables.
Anyway, in an ideal world, auto_ptr’s semantics would be to supress
the dangerous sequence “move pl to p2; use pl and be surprised that

<Generic>Programming

it’s null” while at the same time, allowing the well-behaved sequence
“move pl to p2; prove that pl is not used anymore” which is at the
same time safe, efficient, and useful. The latter sequence is a must
for passing around auto_ptr temporaries and in particular for returning
auto_ptrs from functions. And that’s an essential feature; without it,
auto_ptr would have no advantage over straight automatic variables
(other than saving stack space, which is semantically uninteresting).

There are two important cases of last use of a value: (1) the value
is an rvalue, that is, an unnamed temporary resulting from evaluating
some expression, and (2) the value is a stack-allocated lvalue that’s
being returned or thrown. In both cases, the value is a “goner”—in
the first case, it will be destroyed at the end of the full expression,
and in the second case, it will be destroyed as a consequence of
execution flow exiting that value’s scope. So it would be great if
auto_ptr’s implementation could allow these cases and disallow
compilation of all others. Good news—this is exactly what
standardization proposal N1377 [4] allows. Actually, N1377 focuses
on detecting rvalues, and allows case (2) as a distinguished rule. We
believe N1377 is the most speed-enhancing of all changes to the
upcoming C++0x Standard because it allows user-controlled
optimization of temporary objects, a long-standing sore topic for the
C++ community.

At first blush, it would seem that treating memory just as any oth-
er resource—say, file handles—is a valid approach. But unlike
anything else, memory is a structured medium on top of an un-
structured (better said, less structured) resource. The unstructured
resource consists of memory words, chunks, and everything that has
to do with manipulating raw storage. The structure is given by the
type system and tells you things like, these four bytes represent an
int, those other four bytes represent a float, and those yet another
four bytes store a pointer to a value that in turn has its own struc-
ture, and so on. This structuring (typing) of memory is famously use-
ful, and C++ establishes and partially enforces it during compila-
tion. If you think of it, no other resource has a static type system on
top of it, although appearances can be deceiving. Say, for example,
you think of a socket as an unstructured resource, and of a class HTTP-
Stream as a structured resource on top of it. But what does HTTP-
Stream’s structure rely on? Things like encapsulation, abstraction,
and polymorphism—all of which are possible because of the type
system living in memory! (Virtual tables can’t be overwritten, pri-
vate data can’t be tampered with, function bodies can’t be modified
during runtime...these all are wonderful features of the type sys-
tem.) It turns out that every abstraction your program ever creates
builds on typed memory (and the guarantees it offers) as a back end.

It should come at no surprise that such structure better be solid.
After all, every program abstraction ultimately rests on the type
system. A nice property of languages is the so-called “memory
safety,” which basically means it’s impossible for a program to
corrupt the memory structures. Languages such as Java or LISP are
memory-safe. Languages such as C and C++ are not memory-safe
because they also offer access to the unstructured fabric that typed
memory rests on: the raw bytes in the computer’s memory. Pointer

Memory: Not Just Any Resource

arithmetic, casts, unions, unchecked array accesses, memcpy, are all
examples of ways in which you can arbitrarily peek or poke into
typed memory. But there are correct uses of such features as well,
and that’s why memory-unsafe languages are useful in applications
that must manipulate raw memory, such as memory allocators,
system-level code, and garbage collectors.

Most important for the subject at hand, the structure of the memory
can be violated by using “dangling” pointers to memory that has
been deallocated (and potentially reallocated to host objects of some
other type). That’s why garbage collection is more than just a mere
preference, a fad, or the staple of lazy programmers who can’t clean
up after themselves: Today, we have no other general memory
management technology that preserves memory safety. Freeing
memory by hand is dangerous in the general case because you might
leave dangling pointers behind. No wonder, then, that languages
claiming to be “safe” invariably come with garbage collection out
of the box. There’s no other known way around it, unless you restrict
expressiveness or you take the risk of potentially breaking memory
safety. Proving that a chunk of memory is unused takes time and
space, so garbage collection usually incurs a runtime cost. But with
the rising rate and costs of safety-related exploits and bugs, one
can’t stop wondering what the short end of the deal really is. The
challenge is to create language features that harmoniously combine
the strengths of garbage collection and deterministic termination:
Ideally, HTTPStream has a deterministic destructor that closes the
socket and nullifies it, while the actual memory in which HTTPStream
sits is garbage collected, thus never allowing tampering via dangling
pointers.

—A.A. and B.M.

October 2005

e C/C++ Users Journal e www.cuj.com e 49



<Generic>Programming

Because changing auto_ptr’s semantics would break existing code,
proposal N1771[5] asks that the upcoming Standard deprecates auto_ptr
and introduces a new class, unique_ptr. Here’s unique_ptr in action:

/] This code will compile in the future
unique_ptr<T> Fou() {
unique_ptr<T> pl(new T);
// won’t compile
//unique_ptr<T> p2(pl);
unique_ptr<T> p3;
// won’t compile
//p3 = p2;
// performs a move
p3 = std::move(pl);
return p3;

(In the future, short code samples will use Fou and Barre, not Foo
and Bar. French influence.) unique_ptr does have the full expressiveness
of auto_ptr, but this time done the right way: Unsafe ownership transfer
can’t be done with copy syntax and requires a call to the would-be
standard function std: :move.

Resources in Containers

It is pretty well known that one cannot instantiate standard containers
with auto_ptrs, while those containers gladly accomodate smart_ptrs.
What might be news to some is that proposal N1771 allows containers
of unique_ptr with well-defined and useful semantics. But why
wouldn’t you simply use containers of smart_ptrs everywhere? Because
a shared pointer is never as fast as auto_ptr (or the up-and-coming
unique_ptr, for that matter). Bartosz’s measurements show that
std::sort can be twice as slow due to smart pointers’ overhead alone.
So it does make sense to consider scoped resource management when
your design allows it.

Since you can’t store auto_ptrs in standard containers and unique_ptr
still has a few years to become ubiquitous, Bartosz designed his own
container, the auto_vector, which accepts and dispenses resources in
the form of auto_ptrs. Internally, auto_vector stores pointers inside
a standard vector of pointers. When auto_vector is destroyed, it destroys
all the pointers it owns. The auto_vector<T>::push method takes an
auto_ptr by value and takes over the ownership of a resource from
it. Interestingly, the auto_vector<T>::pop_back method returns an
auto_ptr too. The latter method deviates a bit from the standard style
(normally, pop_back doesn’t return anything), but it makes sense in
the context of resource ownership.

template <class T>
class auto_vector {

public:
void push_back(auto_ptr<T> p);
auto_ptr<T> pop_back();

N

This kind of interface guarantees that the client of auto_vector is
forced into the resource management state of mind. For instance, she
would have to prepare the argument for auto_vector<T>::push_back in
the form of an auto_ptr, and receive the result of auto_vector<T>: :pop_back
into another auto_ptr. No chance for leaking the resource there. The best
part of auto_vector is that it can be used with standard algorithms—such
as std::sort—exactly the same way as std::vector<smart_ptr<T> >.

50 e C/C++ Users Journal e www.cuj.com e

Andrei Alexandrescu and Bartosz Milewski

So why is smart_ptr so much slower than auto_ptr? The reasons
are well known:

* Most shared pointers must allocate an extra counter on the heap when
first created.

» Copying and swapping shared pointers involves extra operations.

* On today’s architectures (fast processor and deep, slow memory hier-
archy), larger is slower. The sheer increase in size of a shared pointer
container means more pressure of the memory hierarchy, which trans-
lates into slower execution [7]. A large vector of smart_ptrs will reach
the physical memory limit and start thrashing the disk sooner than
auto_vector. This is something worth keeping in mind when your pro-
gram is to operate on very large data sets.

In many cases, however, being concerned with performance makes
little sense. That’s why it’s fine to stick to smart_ptrs for common
resource-management tasks. It’s good to know, however, that if push
comes to shove, there are options for speeding up your program.
Besides, paradoxically, because auto_ptr, unique_ptr, and auto_vector
offer a more rigid framework, they force you to better understand
and enforce your application’s ownership patterns. That’s why we
think scoped resource management is definitely here to stay.

Conclusion

Resource management is an important part of any application.
Figuring out your program’s resource ownership patterns is an
important activity that gives you insight into how you can organize
your design, as well as what tools you need to use to enforce those
patterns. Scoped ownership is simple, rigid, and efficient. Shared
ownership is fully flexible, but at a cost in efficiency. Scoped
management of collections of objects can be optimized by using
“auto” containers, of which auto_vector is an example. The future
does provide hope of availing our “perfect” scoped pointers that
work with all standard containers; until then, use existing resource-
management techiques judiciously. You can download auto_vector
at http://relisoft.com/resource/.

References

[1] Alexandrescu, Andrei. Modern C++ Design, Addison-Wesley Long-
man, 2001.

[2] Alexandrescu, Andrei. “Generic<Programming>: Prying Eyes: A
Policy-Based Observer, Part 1.” C/C++ Users Journal, April 2005.

[3] Alexandrescu, Andrei. “Generic<Programming>: Prying Eyes: A
Policy-Based Observer, Part I1.” C/C++ Users Journal, June 2005.

[4] Abrahams, David et al. A proposal to add move semantics support to
the C++ language, JTC1/SC22/WG21 Committee Papers, Septem-
ber 2002; http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/
n1377.htm.

[5] Abrahams, David et al. Impact of the rvalue reference on the Stan-
dard Library, JTC1/SC22/WG21 Committee Papers, March 2005;
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/mn1771.html.

[6] Grossman, Dan, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling
Wang, and James Cheney. Region-based memory management in Cy-
clone, In Proceedings of the ACM Conference on Programming
Language Design and Implementation, ACM, June 2002; http://www
.cs.cornell.edu/projects/cyclone/cyclone-regions.pdf.

[7] Milewski, Bartosz. Disk Thrashing & the Pitfalls of Virtual Memo-
ry, Dr. Dobb’s Journal, May 2002. O

October 2005



