
Type-Safe Formatting

Andrei Alexandrescu

November 29, 2005

Programming in the Windows environment has be-
come a great deal better lately—more precisely, ever
since a lot of the Unix tools have been ported to it.
I’ve programmed for a long time under Windows and
then switched to Unix. After having the quintessen-
tial “Unix ripped my leg and beat me to death with
it” experience, followed by the “Hey, I never thought
things can be done that cool way!” experience, I can
say that programming under Unix can be a lot of pro-
ductive fun. The usual invariants apply; a program-
mer’s “goodness” will port across platforms, but for
a given programmer, Unix might be better after get-
ting over its learning curve (unless, of course, they
put you in a hospice first). Also, I’m not going to
say I’m a whole different person, now that I know
the “Don’t know how to make love” joke. But one
thing is true—of my programmer friends, the ones
who love Windows are exactly those who don’t know
Unix. (Mysterious face and tone.) Coincidence?

In fairness, there’s been a lot of cross-pollination;
competing with Windows has made Unix (in partic-
ular Linux) a lot easier to use for novices, and maybe
more comfortable even for experts. The windowing
environment (KDE) that I’m taking for granted un-
der Linux is, I could say, even more sleek that Win-
dows in places, and definitely more configurable. But
for all the Explorer-like file manager and other graph-
ical tools, you’ll always see a command line window
on my desktop. Because I kid you not, a good com-
mand is worth a thousand mouse clicks.

Much ink has flown, and many trees have been
killed, to bear writings comparing of the two (and
other) platforms, by people much more knowledge-
able and more talented than yours truly (check for
example the classic “In the Beginning was the Com-

mand Line” [4], a very enjoyable read), so I won’t
go about comparisons any further. But there is
one thing—and this segues nicely into this arti-
cle’s theme—that makes the Unix lifestyle attractive
to people passionate about programming languages:
any programming task you want to get done, there’s
not one, but a full toolchest of one-syllable little pro-
grams (awk, perl, sed, grep, bash. . . —they sure must
name bodily parts in Klingon) that are eager to help.
Much everything is a living language in Unixland,
something that makes me think of the Windows en-
vironment as rigid, constrained, and lacking freedom
of expression.

So, having to do some simple file processing tasks
under Unix, I naturally used the wonderfully messy
Perl, and that worked great up to a point where I
needed more speed. So I decided to rewrite that sim-
ple utility in C++. And believe me, if you want to
miss Perl, the perfect approach is to use C++’s I/O
formatting amenities.

1 cout << "Why oh why, world?";

Let me say it upfront and in all honesty: I’m not a
fan of C++’s iostreams. They are cute at first sight,
but in many ways I don’t consider them a big step
forward compared to C’s printf. Given that I hold
printf in contempt, you can easily imagine the sorry
reality of my existence.

The old printf family of functions has the advan-
tages of speed, conciseness, and separation of format
from data, at the cost of safety. Indeed, printf is
about as well-intended, fast, and prone to disaster as
a playful Great Dane running in a porcelain boutique.
So then came along C++’s iostreams, which are much

1



more safe, but totally forgot the lesson of separating
format from data. To clarify what that means, imag-
ine formatting some message. With printf, you’d go
about things something like:

printf(
"Heh, %u frobs and %u twids\n",
frobs, twids);

An important point is that the format string is
separate from the data, so it’s easy to put it in some
file, give it a symbolic name, and then write:

printf(FMT_FROBTWIDREPORT,
frobs, twids);

The file defining FMT_FROBTWIDREPORT collects all
formatting messages and might be under the control
of a different team that deals with the user experi-
ence, translations, and so on. (There’s one problem
lurking in the back—what if some foreign language
wants to render the parameters in a different order?
We’ll get back to the issue of positional parameters
later.)

With iostreams, things look like this:

cout <<
"Heh, " << frobs <<
" frobs and " <<
twids << " twids\n";

Safety is back, at the cost of a syntax that looked
pretty cool in the 80s (but then hey, you’d be amazed
at some of the music that was cool in the 80s). Any-
way, no more need to carefully pair the "%" direc-
tives with the count and the types of the passed-in
arguments—operator overloading takes care of that.
But out of the window is the useful separation of data
from format. And if you enjoy clunky syntax and for-
mat from that’s inseparable from data, you’ll really
love to hear that iostreams are sluggishly slow as well.
To just print the line above to a file on my system
(Linux, of course), printf takes on average 1.78 mil-
liseconds, while cout takes 2.67 milliseconds—that’s
a whole 50% bottom line slowdown due to formatting
costs alone! And we’re not talking about a dry run—
that’s writing real bits to a real file on a real disk.
No matter how many times I’ve heard that iostreams
can be implemented efficiently, and no matter how

I/O bound a program that writes a million lines to
a disk is, the reality in the field is that iostreams are
surprisingly good at slowing things down. In Oliver
Schoenborn’s own tests [3], iostreams fare as bad as
250% slower than printf.

But wait, there’s more. Oh, and a lot more—more
code you have to write to format things. A par-
ticularly eloquent (and not even extreme) example
can be found at http://noptrlib.sourceforge.
net/utils/coutf/, which actually describes Oliver
Schoenborn’s coutf library [3]. Basically, to achieve
the effects of:

printf(
"Hi, count=%s, time=%s, radius=%-6.2fs",
count, theTime, radius, eol);

you’d have to write the following iostreams–based
code:

const int savePrec = cout.precision();
const int saveWidth = cout.width();
const fmtflags saveFlags = cout.flags();
// output:

cout << "Hi, count=" << count
<< ", time=" << theTime << ", radius="
<< ios_base::left << setw(6)
<< setprecision(2)
<< ios_base::fixed << radius
<< std::endl;

// restore formatting state:

cout << setprecision(savePrec)
<< setwidth(saveWidth);

cout.flags(saveFlags);

If iostreams are a step towards the future, I sure
hope the future will have a definitive solution for the
Carpal Tunnel Syndrome.

Googling for “safe printf” yields (in addition to
the coutf library) a number of results, among which
the Format library (part of Boost) [1]. With Boost
Format, you’d write:

cout << boost::format(
"Heh, %1% frobs and %2% twids\n")
% frobs % twids;

The Format library is typesafe, supports positional
parameters (by numbering them; the same argument

2



can be printed several times by repeating its number
in the format string), and provides pretty good com-
patibility with printf. However, I decided Boost
Format wasn’t for me, mainly because it lacks a
typesafe scanf counterpart, which I needed as well.
Also, Boost Format and coutf both build on top
of iostreams, which I didn’t like to begin with, and
which will guarantee slow execution. Why work hard
to implement the good fast simple behavior on top of
the new bad slow infrastructure, instead of throwing
everything away and enjoying the pleasure of rein-
venting the wheel all over again?

Some little nits: the coutf library only supports
up to nine parameters, which is “cheating.” With
Boost Format, I wasn’t that thrilled about overload-
ing “%” for passing arguments, but that has to do
with my having settled long ago on a different solu-
tion for variable arguments.

2 The Trailing Parens Idiom

When it comes about functions with variable argu-
ment count, it’s safe (in more than one sense of the
word) to flat out unrecommend the built-in ellipsis
facility. The reasons are discussed in a number of
places. Suffice to say that in a little (40K lines) ap-
plication that I inherited, so far I found a total of
four bugs: one was an assert with side effects, and
the rest were varargs-related. Ironically, they were
supposed to format error messages, the very point
at which you’d love to see some output before the
application dies on you!

A simple way to emulate variable arguments is to
have your function return an object that accumulates
state and has a member function that adds more ar-
guments, and returns a reference to *this (such that
calls can be chained). This allows the client syntax:

Function(expr1).add(expr2).add(expr3);

You only need to choose an appropriate name for
the add function... or should it be with, pass, or
even _? You could overload some operator (that’s
what Boost Format does), yielding the client syntax:

Function @ expr1 @ expr2 @ expr3;
// or

Function(expr1) @ expr2 @ expr3;

where @ is your operator of choice. The only trou-
ble is that now your chosen operator will be in the
precedence game with exprn that you pass, so you
need to be careful.

To avoid both the dilemma of choosing a name
for the trailing function, and the dilemma of finding
an operator that looks good and has the right prece-
dence, I’ve settled for the most concise solution of all,
which is simply overloading T& T::operator()(U),
where U ranges over the types of interest. That fos-
ters a very simple client syntax:

Function(expr1)(expr2)(expr3);

The call syntax is simple and uniform, and the first
parameter doesn’t have special syntactic status com-
pared to the others.

3 Type-safe Formatting

So by now it’s no secret what this article is up to:
Define a function that is format–string–compatible
with printf, uses the trailing parens idiom to collect
arguments, and of course is type-safe as a natural
outcome of using overloading instead of the danger-
ous ellipsis. Nothing new here, but so very useful. In
Petru Marginean’s words, “when starting on a job,
I always bring ScopeGuard, Enforce, and typesafe
printf in my little virtual backpack.”

Let’s crank up our ambitions a bit. The printf
family also includes fprintf and sprintf (plus its
cousin snprintf, which is supposed to be a teeny
bit safer). So let’s define not only functions that can
write to files and strings, but functions that can write
to any device supporting a character I/O operation.
To keep it simple, the smallest interface that makes
sense is a function:

// Implement this for your Device type

// and your Char type

void write(Device where,
const Char* begin, const Char* end);

(Don’t get fooled by the pass–by–value of Device;
Device is a generic type that actually could be a ref-
erence or pointer type.) This design starts so sweet

3



and simple, it’s hard to contain the impetus of im-
plementing some useful devices right on the spot:

void write(std::FILE* f,
const char* from, const char* to) {

assert(from <= to);
// TODO: throw on error

fwrite(from, 1, to - from, f);
}
void write(std::string& s,

const char* from, const char* to) {
assert(from <= to);
s.append(from, to);

}

Next thing we need to do is to define a class, let’s
call it PrintfState, that holds the formatting string
and implements overloads of operator() to print to
a device. PrintfState is templated on the Device
it works on, and also on the character type it uses:

template <class Device, class Char>
class PrintfState {
public:
PrintfState(Device dev,

const Char* format) {
... initialize state ...

}
... more ...

};

We’ll get back to the implementation shortly; first,
let’s complete the scaffolding by defining the user-
invocable functions:

PrintfState<std::FILE*, char>
Printf(const char* format) {
return PrintfState<std::FILE*, char>(
stdout, format);

}

PrintfState<std::FILE*, char>
FPrintf(FILE* f, const char* format) {
return PrintfState<std::FILE*, char>(
f, format);

}

PrintfState<std::string&, char>

SPrintf(std::string& s, const char* format) {
return PrintfState<std::string&, char>(
s, format);

}

template <class T, class Char>
PrintfState<T&, Char>
XPrintf(T& device, const Char* format) {
return PrintfState<T&, Char>(
device, format);

}

Of course, you could create instances of
PrintfState by hand, but the functions have
the advantage that they deduce their template
arguments, so there’s no need to specify them. The
first three functions define counterparts for printf,
fprintf, and sprintf, respectively. The last
function, aptly named XPrintf (for some reason,
“X” holds the title of the coolest letter in the
alphabet. . . “X” sells!), defines a generic wrapper for
whatever new device you have invented. By the way,
if you want to define output to something as fast as
a straight fixed-size character buffer, all you have to
say is:

template <class Char>
void write(pair<Char*, Char*>& s,

const Char* b, const Char* e) {
assert(b <= e);
if (e - b > s.second - s.first)
throw overflow("bad luck");

s.first = copy(from, to, s.first);
}

template <class Char, size_t N>
PrintfState<pair<Char*, Char*>, Char>
BufPrintf(Char (&buf)[N], const Char* format) {
return PrintfState<pair<Char*, Char*>, Char>(
make_pair(buf, buf + N), format);

}

The code above simply improvises a device out of
two pointers marking the buffer’s boundaries (very
STLesque, I know). Each call to write will do the
obligatory (please!) bounds check (which is obliga-
tory), then copies the data and bumps the pointer

4



(oh, did I mention the obligatory check preceding all
that). If you prefer, you could use a smarter fixed-
size vector (Boost has one) as a back-end, while,
of course, not forgetting to perform the obligatory
bounds check.

Let’s get back to PrintfState’s implementation.
The rules that govern printf argument-taking ways
(and, in fact, those that govern ellipses) are:

1. All integral types are converted to long (or
unsigned long, doesn’t matter, since signed
and unsigned types have the same representa-
tion);

2. float is converted to double;

3. Pointers to objects become void*;

4. Everything else is undefined.

We’d like to emulate that behavior, except
for (4) of course. So PrintfState defines
overloads of operator()(unsigned long),
which does the actual work, and then defines
operator() for all integral types to forward to
operator()(unsigned long). You can do that by
hand, with the help of a template, with type traits,
or (if you’re lazy like me) with a lowly macro. (Just
give the macro a really really long name.) Then,
PrintfState defines operator()(const char*),
operator()(int*), operator()(short*), and
operator()(long*), the last three for imple-
menting the "%n" specifier that allows one to
save how many characters have been printed
so far. operator()(const void*) defines the
implementation-dependent rendering of pointers (via
the "%p" specifier). Finally, PrintfState defines
operator int() const such that, in the name
of printf compatibility, callers can fetch the total
number of characters written (-1 in case of error).

The strategy employed by PrintfState is nec-
essarily different from that of printf, due to the
incremental way that parmeters are revealed to
PrintfState. Upon initialization, PrintfState
makes as much progress as it can (by printing its
format string up to the first directive). Then, as
operator() is invoked, PrintfState formats one

argument, writes it out, and then again writes the
format string up to the next formatting directive.

4 Testing 1–2–3

Cranky old man that I am, I not only dislike the
iostreams and printf, but also testing my code. In
fact, my entire career path could be debunked as a
series of moves to keep me away from having to test
code. First, I strived to be a manager; then, I’ve tried
consulting; then, I cunningly wrote Loki such that no
compiler could even compile it, so there was nothing
to test; and finally, I’ve become a grad student. You
can’t dodge testing much better than that.

Yet, after attending one of Robert Martin’s hilari-
ous tutorials (highly recommended) at a conference,
something stuck to my ear: “I’d gotten used to al-
ways first write a test that fails, and only then write
code to make the test work.” I’ve tried this very
simple technique and I have to say it’s highly sat-
isfactory. Implementing features without thorough
regression testing leads to an increasing feeling of in-
security. On the contrary, when you first write a test,
and then write code to fulfill it, gives a pleasant sense
of utility (hey, your test code already is the first sat-
isfied customer).

In the case of Printf testing actually is easy, be-
cause a reference is readily available: printf it-
self. So a test case would format some stuff using
snprintf, then format the same stuff with the same
format string, and compare the results.

Concocting format strings that exhaustively test
all of the combinations of various specifiers and mod-
ifiers turned out to be a boring task, so why not leave
it to chance—and quite literally so. My test code
generates some random letters, followed by a random
(but correctly formed) format specifier, followed by
some more random chaff. Depending on the type
character generated, a different type of randomly-
generated data (integral versus string versus pointer)
is passed to the comparison routine. Rinse, lather, re-
peat in an infinite loop. At the time of this writing,
the code has passed 32,623,234 tests. Wait, that’s
33,236,174.

Seeding the random number generator with a con-

5



stant number yields a pseudorandom sequence that
repeats exactly the same every run. That eases de-
bugging; if your program crashes at iteration 6455, in-
serting a conditional breakpoint reproduces the prob-
lem exactly. If exact reproducibility is not needed,
seeding the random number generator with time(0)
will yield a different sequence each run.

5 More Features

So far Printf offers no more formatting amenities
than printf, plus some more device independence.
You can download the source code from http://
moderncppdesign.com/code. Once this baseline is
in place, many extensions come to mind:

• Positional parameters. If you care about ever
translating your strings to a different language,
positional parameters are a must.

• More formatting directives. Printing out arrays,
strings, STL containers, and the such are imme-
diate. A more general extension mechanism that
would allow users to define their own formatting
directives is just around the corner. (In fact,
GNU’s printf implements the C version of
exactly that idea as an extension, see http:
//pauillac.inria.fr/∼lang/hotlist/free/
licence/fsf96/drepper/paper-7.html.)

• Scanf. No matter what amenities Printf imple-
ments, their respective converse should be im-
plemented by Scanf.

• Regular expressions. Now that we got to talk
about scanf and Perl, how about a input scan-
ning library that supports regular expressions?
I’d love that, and I guess I’m not the only one.
Eric Niebler’s xpressive library [2] is an xcellent
implementation or perl regexes, and is asymptot-
ically approaching version 1.0. Adding formated
input primitives on top of that should be “a triv-
ial matter of programming.”

I got so excited about “printfing” stuff, that I com-
pletely forgot about the Mailcontainer section, and
now there’s no space anymore. (You see, CUJ has a

fixed buffer design for their number of pages.) That
is a pity since many gentle readers have sent a lot of
great ideas and feedback following the article about
generic Observers, including the ego–shattering “I am
kind of unsatisfied with the hierarchal policy idea
that you proposed in CUJ.” Please bear with me until
the next installment of Generic〈Programming〉. Til
then, let me restore my ego by eyeing Printf’s test
count: wow, 88,223,546 passed.

References

[1] Samuel Krempp. The Boost Format Library.
Available at http://boost.org/libs/format/
doc/format.html.

[2] Eric Niebler. The xpressive Library. Avail-
able at http://boost-sandbox.sourceforge.
net/libs/xpressive/doc/html/index.html.

[3] Oliver Schoenborn. The coutf Library. Available
at http://noptrlib.sourceforge.net/utils/
coutf/.

[4] Neal Stephenson. In the Beginning was
the Command Line. Available at http://
cryptonomicon.com/beginning.html, 1999.

6


