Prying Eyes: A Policy-Based Observer (IT)

Andrei Alexandrescu

February 19, 2006

During this year’s Software Development West con-
ference (http://sdexpo.com), I have had the honor
to personally meet Alexander Stepanov, the creator
of the STL. The Russian mathematician and Soviet
dissident has produced a strong impression on at least
three people—David Abrahams, Eric Niebler, and
myself.

The three of us have had the chance to enjoy a
chat with Stepanov over a glass of wine following his
conference talk. Both in his talk and in the private
discussion, Stepanov’s message came across loud and
clear: the essence of programming is mathematics,
and any good programmer should master the math-
ematics that forms the basis of computing, which is
just highschool-level algebra and (perhaps surprising
to the unwary) geometry. Speaking of people who
have the inclination to “do something,” Stepanov
said: “If you really want to do something in pro-
gramming and can afford it, go back to school. It’s
obvious. I mean, if you wanted to play piano, would
you have to ask if you need to buy a keyboard?”
That, of course, was like (piano) music to the ears of
someone—such as, just as an example, yours truly—
who had decided to quit a well-paid job to attend
grad school. (It was also great that Adobe paid for
the wine.) Stepanov mentioned two books he’d rec-
ommend to any programmer, information that I'll du-
tifully pass further (although I do reckon the guru’s
message is pale when passed through an intermedi-
ary): George Chrystal’s Algebra [2] and Euclid’s El-
ements [3].

Assuming you have now come back from your near-
est bookstore and could set the two freshly-acquired
books aside for a minute, let’s continue with ana-
lyzing the Observer design pattern [4] and generic

implementations thereof. To recap the first article
dedicated to Observer [1], let’s walk again through
the main points already discussed:

e The actors in an observation framework are:
Subject, Event, and Observer. Observer objects
watch Events originated by Subjects.

e The basic components are a subscription ser-
vice and a distribution service. The subscrip-
tion service maintains a registry that identifies
which Observers are interested in which Events
of which Subjects. The distribution service car-
ries event notifications from the Subject to its
Observers.

e The very palpable danger of mutual interac-
tions between calls to registration, deregistra-
tion, and updating makes the pattern implemen-
tation challenging.

1 DMailcontainer

There’s been some good traffic in regarding the Ob-
server pattern. Umesh Sirsiwal writes:

I have used a simple but very effective
solution to the observer problem. As you
mentioned, in a simplistic world, Subject
will store Observer in a list and inform
Observer when the event takes place. As
you pointed out, this simple solution does
not work for Observers. Remembering it-
erator at Attach and Detach works in sim-
ple solutions but does not scale if there is a



possibility of multiple traversal over the list
for different types of events.

The solution I use is to insert a dummy
element in the middle of list that was it-
erated point to this element while making
the callback. This guarantees that the it-
erator is always pointing to a sane list ele-
ment when the callback returns. This scales
well, because you can use multiple iterators
for multiple events happening at the same
time. You just need a flag showing that this
element as dummy element. If one wants
to place callbacks to Observer because of a
large number of Subjects (for example dis-
tribution of routes), the program can give
up CPU and come back—and the iterator
is still pointing to a sane location.

As you mentioned, list is not the most
efficient container for large number of ob-
servers. In that case, I maintain 2 different
containers. Map for fast lookup, and list
for signaling the observer. Map itself just
contains pointer to the list element.

That’s an interesting design, reminding of the lin-
ear search algorithm that first plants a sentinel at the
end of the searched sequence; just like that algorithm,
it has the disadvantage that it needs to mutate the
structure being iterated.

A solution I have myself used in the past that bears
some similarity with Umesh’s is to use obliteration in-
stead of removal. That is, Subject stores a vector of
pointers to Observer, and whenever a deletion oc-
curs, instead of actually removing the slot from the
vector, Detach would simply write the null pointer in
the corresponding slot. Of course, this doesn’t help
insertions that much.

Benjamin Kaufmann writes:

I recently had to implement a little type
safe observer-system [...] and I had exactly
the problems you mention in your article,
i.e (1) how to handle attaching/detaching
while an update is active? (2) how to han-
dle intervening notifications (a notify is trig-
gered while an update is active)?

I decided to implement an event-centric
system with an event-channel class as its
central element. An event channel dis-
patches events of one specific type and
provides an interface for attaching/detach-
ing handlers (observers). It distinguishes
four different dispatching strategies—LIFO-
Order, FIFO-Order, Holding, Discarding—
which are unfortunatly hard-coded as an
enum. It uses deferred attaching/detaching
if an event is currently active, i.e. detaching
for example only marks the observer as de-
tached but erasing is done only after the cur-
rent event is completly handled (thus keep-
ing iterators valid).

Although my implementation is good
enough for our current needs, I'm really cu-
rious how an C++ Expert is going to solve
those problems. Even if this means that I
have to start over once I finished reading
your second article.

Hey, hey, wait a minute. Could someone please
take that huge rock off my back? Nothing short
of walking on water could impress such an astute
readership, sigh. Let’s not forget that Benjamin is
the one who’s ported Loki to Microsoft Visual C++
6 (http://fara.cs.uni-potsdam.de/~kaufmann/
?page=lokiport), something that I thought is im-
possible for the longest time. So let me set the record
straight away: don’t expect this article to solve all of
the observation-related issues ever in one fell swoop.
But, with luck, you’ll see a few ideas that you might
find interesting.

2 Time-Decoupled Observation

The essential member functions of Subject, as out-
lined in the previous installment, are bool Attach(
Observer*), bool Detach(Observer*), and void
NotifyAll(). An obvious improvement that will
help us notify observers of a specific event is to de-
fine void NotifyAll(Event) instead. But more in-
terestingly, let’s focus on the argument passed to
Attach and Detach. Why necessarily a pointer to
the Observer?



Asking seemingly silly questions about types in in-
terfaces is worthwhile when talking genericese. In the
generic world there’s no gratuitous commitment to
type, and therefore it’s worthwhile asking, what con-
cept does that Observer* (or Observery if you wish)
really stand for? Not only that question is interest-
ing, but its answer reveals an entire new dimension
of the Obsever design space.

And the answer is, the * in Observer* stands for
“identifier,” “moniker,” “handle,” even “sobriquet”
if you allow my being snobbish. When attaching, an
Observer object tells the Subject: “Here’s my busi-
ness card (the pointer), keep it and call me (invoke
Subject::Update) when something interesting (an
event) happens.”

The interesting part is that, while a pointer (or
a reference) is the simplest incarnation of the con-
cept of a sobriquet, pardon, identifier, there could
be many others. For example, imagine the following
situations:

e Impedance adaptation. In a database applica-
tion, the observers could be procedures identi-
fied and invoked by name (a string). In this case
the functionality provided by the Observer ob-
ject itself is limited to forwarding to a call into
the database API. Then, it would be good to
avoid keeping a bunch of Observer objects just
to satisfy the observation protocol.

o “Just-In-Time” Observation. In an applica-
tion using a larger-scale object model (such
as CORBA, COM, or Mozilla’s own platform-
independent COM), it’s quite common for appli-
cations to register Observers by their identifier
(such as the Globally Unique Identifier (GUID)),
without the actual Observer objects even being
in existence at the moment of attachment. For
example, an application might associate an ob-
server with a certain system or file system event
by using its GUID; when that event happens,
the infrastructure (which has stored the GUID)
will pass that GUID to an object factory, obtain
a true pointer to an Observer, and immediately
invoke Update against it.

So a good design would abstractize the notion of

ObserverID and perhaps use Observer* as an over-
ridable default.

3 Event-Oriented Observation

So far, we’ve dealt with a subject-oriented approach:
each Observer would attach to a Subject, and would
receive notification whenever Subject finds fit.

A more refined (and potentially more efficient) de-
sign variant is to introduce per-event subscription
into the mix. In such a design, attachment and de-
tachment would be made on a per-event basis, i.e.
Subject would expose Attach(ObserverID, Event)
and Attach(ObserverID, Event). In addition, De-
tach(ObserverID) might still be there with the se-
mantics of detaching an observer from all of the
events it was listening to.

The choice of data structures used for storing
Observers and Events inside the Subject depends
on the targeted performance and behavior during mu-
tual calls to Attach, Detach, and NotifyAll. A
straightforward design would prescribe a multimap
keyed by Event and storing ObserverIDs.

Obviously, if there’s no Event-based discrimina-
tion, then all of that is just a waste of infrastructure.
How, then, to devise a design that allows for optional
support for events? A simple solution that we’ll use
in this article is to define a NullEvent empty class
as in:

class NullEvent {};

and then allow Subject implementers to specialize
their implementations on NullEvent and other event
event types.

4 A Hierarchy of Observers

But the question remains, how to go about customiz-
ing the Observer pattern in the zillion ways that we
discussed so far? We should be able to configure the
following design dimensions:

e The storage used, together with the attachment
and detachment algorithms, should be customiz-
able featuring various tradeoffs.



e Per-event subscription versus per-subject sub-
scription should be customizable, too.

e Even for a given storage, the notification pro-
cedure can vary widely (and wildly!) including
various techniques to handle attachments and
detachments during notifications, notifications
during notifications, and other such mutually re-
cursive calls.

e Observer identification (by default through a
pointer) should be customizable so as to sup-
port just-in-time notifications that construct the
Observer object on the fly.

My early designs have all attempted to separate the
subscription mechanism (the actual container plus
Attach and Detach) from the notification mecha-
nism (NotifyAll). There was quite some appeal to
such an approach, backed up by numerous metaphors
rooted in the real world. For example, imagine a
newspaper distribution framework. The subscrip-
tion service would keep recipient addresses and all,
whereas the actual distribution service would be dis-
tinct, featuring the postal system, couriers, pigeons,
owls, and whatnot. In such a framework, there would
be several subscription systems (based for example on
vector, list, and map) and on top of those, various
transport mechanisms that take care of iterating the
containers and delivering updates to Observer ob-
jects. That is all nice and dandy, in keep with real-
world metaphors, and therefore likely to engender so-
lutions similar to those existing in that metaphorical
space. So, for the longest time, my Observer designs
invariably gravitated around the formula:

template <
class Event,
class SubscriptionPolicy,
class NotificationPolicy,
class BrokeragePolicy

>

class Subject;

where SubscriptionPolicy would implement At-
tach and Detach, NotificationPolicy would take
care of NotifyAll by iterating over the Subscript-
ionPolicy, and, finally, BrokeragePolicy would im-

plement the ID-to-Observer mapping that we talked
about in the previous section (by default, there would
be a PointerBrokerage that uses pointers as IDs).

The appeal of such a scheme made it particu-
larly hard to see its fatal flaw: there is too little
orthogonality (independence) between the subscrip-
tion and distribution policies to warrant decompo-
sition across the subscription-distribution line. The
iteration process in NotifyAll is way too dependent
on calls to Attach and Detach, and therefore the
notification policy would need to intercept Attach
and Detach and perform things like saving iterators,
throwing exceptions, backing off, and the such. Once
a policy needs to to stick its nose into another policy’s
business, out the window are things like orthogonal-
ity, debugging policies independently, freely combin-
ing them to achieve mighty design richness, and ease
of implementing them.

So something that I'd take pride in was to tear
the commitment to the cute subscription-notification
view away from my heart. Metaphors are great, but
only when they resist beyond the watercooler con-
versation level. You must have a reasonable level
of similarity so you can work with a metaphor. In
our case, yes, transporting a newspaper is different
from maintaining subscriptions to it. However, in
the real world you don’t have customers subscrib-
ing and unsubscribing other customers as soon as
the newspaper arrives (calls to Subject::Attach/
Subject: :Detach during Observer: :Update); sub-
scribers don’t give new, confusing directions to the
mailman on where to go with the other newspapers;
they don’t change the newspapers being delivered to
other customers (active observation); they don’t take
enjoyment in punching the mailman (iterator invali-
dation); and so on.

So, could one build a policy-based design follow-
ing the newspaper subscription paradigm? Sure. It
would just be a very, very limited design. (On the
other hand, you must admit that, if the real world
were built as a replica to our designs, it would be
a very fun and interesting place—except for postal
workers.)

The new design I came up with is hierarchical:
there is only one policy model (template if you al-
low overloading the word). Those policies build not



in parallel with one another, but on top of one an-
other, in a hierarchical fashion. Each policy imple-
ments Attach, Detach, and NotifyAll in addition to
a few helpers that foster inter-policy communication,
as we'll see below. A policy could either implement
these three functions from first principles, or decorate
(yes, that’s the Decorator design pattern [4] used at
compile time!) another policy with the same inter-
face.

Before showing an example, let’s show the Subject
archetypal policy. In the code below, “@” acts as
a placeholder for some code written by the policy
implementer.

template <Q@arguments@>
class Subject {
public:
typedef Q@ Event;
typedef @ Observer;
typedef @ ObserverID;
enum {
attachKillsAllIters = @,
detachKillsCurrentIter = Q,
detachKillsAllTIters = @
};
Observer* ID20bserver (ObserverID id);
bool Attach(ObserverID, Event);
bool Detach(ObserverID, Event);
bool Detach(ObserverID);
void NotifyAll(Event);
protected:
typedef Q@ iterator;
iterator begin(Event);
iterator end(Event);

};

Of course, this is a syntactic interface that doesn’t
need to be respected verbatim. For example, Ob-
server could be a class and not a typedef. The
interface’s protected part is provided to allow derived
Subjects to hook new functionality.

The enum values can be zero or nonzero, de-
pending on the capability level implemented by the
Subject. If attachKillsAllIters is nonzero, that
means a call to Attach invalidates any iterators.
Similarly, if detachKillsAllIters is nonzero, that
means a call to Detach invalidates any iterators. As

a refinement, if detachKillsAllIters is zero and
detachKillsAllIters is nonzero, that means a call
to Detach only invalidates iterators pointing to the
element being detached, but not others (this is the
case for all node-based containers such as list or
map). As a corrolary, a Subject that has all zeros in
the enum values is rock solid (and perhaps not too
efficient).

The idea is to build piecemeal functionality as
Subject policy implementations that build on top of
other Subject policy implementations. For example,
let’s turn back and implement the simplest Observer
design—the one that we’ve shown in the previous in-
stallment of Generic(Programming). We first define
a BaseSubject class that’s only templated on the
event type, and has no protected interface because
it provides no iteration. BaseSubject serves as an
abstract root on which to build functionality.

template <class E>
class BaseSubject {
public:
typedef E Event;
struct Observer {
virtual void Update(Event) = 0;

};

typedef Observer* ObserverID;

enum {
attachKillsAllIters = 1,
detachKillsCurrentIter = 1,
detachKillsAllIters = 1

}s

virtual bool Attach(ObserverID,
Event) = 0;

virtual bool Detach(ObserverID,
Event) = 0;

virtual void Detach(ObserverID) =

virtual void NotifyAll(Event) = 0;

virtual “BaseSubject() {}

Observer* ID20bserver (ObserverID id) {
return id;

0;

}
};

Now let’s implement BareboneSubject on top of
BaseSubject:

template <class E>



class BareboneSubject
public:
typedef typename
BaseSubject<E>::Event Event;
typedef typename
BaseSubject<E>: :0bserver Observer;
typedef typename
BaseSubject<E>: :0ObserverID ObserverlID;
bool Attach(ObserverID id, Event e) {
value_type v = make_pair(e, id);
if (find(data_.begin(),
data_.end(), v)
I= data_.end()) {
return false;
3
data_.push_back(v);
return true;

: BaseSubject<E> {

}
virtual bool Detach(ObserverID id,
Event e) {
const value_type v =
const iterator i =
find(data_.begin(),
data_.end(), v);
if (i == data_.end()) return false;
data_.erase(i);
return true;

make_pair(e, id);

}
virtual void Detach(ObserverID id) {
for (iterator i = data_.begin();
i !'= data_.end(); ) {
if (i->second !'= id) ++i;
else i = data_.erase(i);
3
}
virtual void NotifyAll(Event e) {
for (iterator i = data_.begin();
i 1= data_.end(); ++i) {

if (i->first != e) continue;
(i->second) ->Update(e) ;
by
}
private:
typedef pair<Event, ObserverID>
value_type;

typedef vector<value_type> container;

container data_;

protected:

};

typedef typename container::iterator
iterator;

iterator begin(Event);

iterator end(Event);

Once this rather boring scaffolding is in place,

adding new functionality is quite easy. For example,
let’s define a policy implementation ClosedNotify
that builds on top of some other policy (possibly
BareboneSubject) a mechanism that rejects calls to
Attach and Detach during NotifyAll:

template <class Subject>

class ClosedNotify : Subject {
public:
ClosedNotify() : closed_(false) {
}

typedef typename
Subject::Event Event;
typedef typename
Subject: :0bserver Observer;
typedef typename
Subject: :0bserverID ObserverID;
bool Attach(ObserverID id, Event e) {
if (closed.)
throw logic_error("");
return Subject::Attach(id, e);

}
virtual bool Detach(ObserverID id,
Event e) {
if (closed_)
throw logic_error("");
return Subject::Detach(id, e);
}

virtual void Detach(ObserverID id) {
if (closed.)
throw logic_error("");
return Subject::Detach(id);
}
virtual void NotifyAll(Event e) {
closed_ = true;
struct Local {
“Local() { *b_ = false; }
bool * b_;



} local = { &closed_ };
Subject: :NotifyAll(e);
}
private:
bool closed_;

};

(Yeah, I, too, like the struct Local inside Notify-
A11 that resets b_ quickly and easily.) The Closed-
Notify policy builds a fail-proof notification strategy
on top of any other Subject policy, no matter how
that is implemented. And that’s the beauty of it all:
you grow whatever complex functionality by choos-
ing the appropriate policy layers. In an application,
you’d define for example:

typedef BaseSubject<int> MySubject;
typedef MySubject::0Observer MyObserver;

typedef ClosedNotify<BareboneSubject<int> >
MySubjectImpl;

Pretty cool. Other policies could flip some or all of
the three enums from true to false, guard against
exceptions thrown from within Observer: :Update,
and so on.

Now, the email traffic following my first column
on the subject suggest a high level of interest in the
Observer pattern, and that many of you have built
quite some interesting variations on it. Furthermore,
I'm way over the word limit for this article and I
want to keep Stepanov’s advice because I believe it’s
important. So here’s a challenge for you: send me
some good policy implementations starting from the
Subject model above. Let’s see how robust the de-
sign is—or how it could be made better. The best,
most insightful submissions will be featured in the
next column’s Mailcontainer section.

5 Conclusions

After concluding (definitely without exhausting the
subject) the discussion on variations of the Observer
design pattern, this article built a small framework
that relies on a hierarchical, layered topology of poli-
cies, as opposed to the usual scattered one in which

each policy is a separate template argument. The hi-
erarchical design has the advantage that it deals much
better with unorthogonalities. The disadvantage is
that it puts extra burden on the client in that the
design user must be careful how they stack policies,
otherwise the framework might generate nonsensical
or inefficient implementations.

I’ll attach an Observer to my email Inbox carefully,
eagerly waiting your submissions. Til next time,
happy coding, and don’t punch the mailman.

6 Acknowledgments

Many thanks are due to Eric Niebler, who provided
helpful insights at a time where I didn’t even know
exactly what to ask.

References

[1] Andrei Alexandrescu. Generic{Programming):
Prying Eyes: A Policy-Based Observer (I). C++
Users Journal, April 2005.

[2] George Chrystal. Algebra. Tth edition. Chelsea
Pub Co, 1980.

[3] Euclid, Dana Densmore, and T.L. Heath (Trans-
lator). Elements. Green Lion Press, 2002.

[4] Erich Gamma, Richard Helm, Ralph E. Johnson,
and John Vlissides. Design Patterns. Addison-
Wesley, Reading, MA, 1995.



