
Generic〈Programming〉

Prying Eyes: A Policy-Based Observer (I)

Andrei Alexandrescu

February 19, 2006

This article discusses implementations of the Ob-
server pattern (as described by the Gang of Four [3].
The approach we’ll take is similar to that of Modern
C++ Design [1]: first discuss the pattern itself, iden-
tifying its key points of customization—the places in
which there is a design decision to be made. Then,
we will abstract the thusly discovered points of cus-
tomization into policies, and we’ll assemble a generic
Observer framework from those policies.

1 Mailcontainer

The three µIdeas in Generic<Programming>’s Feb-
ruary installment [2] have gotten a lot of attention
and good feedback. As the Hula Hoop inventers
might have said, you never know what people are
gonna like. First, Dan Nuffer pointed out:

I just finished reading your column in
the February issue of CUJ, and thought I’d
mention a way to detect unchecked return
codes at compile time using a gcc extension:
__attribute__((warn_unused_result))

Compiling this code:

int FallibleFunction()
__attribute__((warn_unused_result));

int foo() {
FallibleFunction();

}

outputs this warning:

warning: ignoring return value of

int FallibleFunction(), declared with
attribute warn_unused_result

The warning could be changed to an er-
ror by specifying the -Werror command line
option.

That’s pretty useful for gcc users, and those aiming
for portability, Dan points out, could use #define to
use warn_unused_result attribute under gcc, and
fall back to runtime errors on other platforms.

David Brownell sent me his ErrorChecker code
that my µIdea#1 unwittingly plagiarizes, and
Michael Borghart nicely points out a couple of typos
(redundant braces) that I’m sure you also noticed if
you ever tried to copy the code in a file. Moreover,
Michael points out that the code below has a prob-
lem:

IgnoreError(FallibleFunction());

(where IgnoreError is a type and
FallibleFunction is the name of a function return-
ing ErrorCode<int>). The intent was to construct
an anonymous temporary of type IgnoreError
from the expression FallibleFunction(). But
the compiler yields the impenetrable error mes-
sage: “IgnoreError FallibleFunction(): over-
loaded function differs only by return type from
ErrorCode<T> FallibleFunction()”. Whoa,
whoa. What is going on over there?

Whenever there’s trouble, the French say, cherchez
la femme. To paraphrase that for C++,
whenever there’s trouble, cherchez la fastidieuse
analyse du C++, which is my attempt at ren-
dering in French Scott Meyers’ famous “beware

1



of C++’s most vexing parse” [4]. Indeed,
IgnoreError(FallibleFunction()); is parsed as
IgnoreError FallibleFunction(); which is noth-
ing but the declaration of a function.

A nice solution would be to define IgnoreError as
a function and not as a type:

template <class T>
void IgnoreError(const ErrorCode<T>& code) {
// silently shut off the error, if any

code.read_ = true;
}

which requires making IgnoreError<T> a friend of
ErrorCode<T>.

Finally, Attila Feher points out that
ErrorCode<T>::operator T() should be made
const, to obey to the “least mutability” principle.
He also suggests to make ErrorCode’s constructor
explicit, something that I chose to disagree with for
ease-of-use reasons.

Today’s discussion was motivated by an email from
David Blume, who has written a very nice study (see
http://observer.dlma.com) on generic implemen-
tations of Observer, study that opens with a bold
question:

What would happen if Andrei Alexan-
drescu, the author of Modern C++ Design,
and Martin Fowler, the author of Refactor-
ing, were required to refactor and generalize
the Observer pattern sample code from the
book Design Patterns? I imagine we’d end
up with a policy-based observer pattern.

The study is interesting and touches on a number
of interesting issues, which we’re likely to get into
in a future installment. The focus of the article you
are now reading is to recap the Observer pattern and
to discuss a few important tradeoffs and caveats in
implementing the pattern that are often understated
or even forgotten.

2 Observer: Generalities

Honest, Observer was on the tentative table of con-
tents for Modern C++ Design. The pattern is beau-

tiful, immensely useful, and fits the policy-based de-
sign methodology like a glove. It’s also a glove with
many fingers so to say, because, as we’ll see, there are
many useful ways to “cut” the pattern, with various
degrees of orthogonality.

Let’s recap the basics of Observer, as summarized
by the GoF:

Define a one-to-many dependency be-
tween objects so that when one object
changes state, all its dependents are noti-
fied and updated automatically.

Central to Observer is the long-distance dispatch
from a concrete “subject” and an unbounded num-
ber of concrete “observers” via the abstraction pro-
vided by their respective base classes Subject and
Observer. A barebones incarnation of the Observer
pattern is shown below.

class Observer {
public:
virtual void Update() = 0;

};

class Subject {
public:
virtual bool Attach(Observer*);
virtual bool Detach(Observer*);
virtual void NotifyAll();

};

class BareboneSubject : public Subject {
public:
virtual bool Attach(Observer* pObs) {
if (find(data_.begin(),

data_.end(), pObs) != data_.end()) {
return false;

}
data_.push_back(pObs);
return true;

}
virtual bool Detach(Observer* pObs) {
const Container::iterator i =
find(data_.begin(),
data_.end(), pObs);

if (i == data_.end()) return false;

2



data_.erase(i);
return true;

}
virtual void NotifyAll() {
for (Container::iterator i = data_.begin();

i != data_.end(); ++i) {
(*i)->Update();

}
}

private:
typedef vector<Observer*> Container;
Container data_;

};

The Subject offers the Attach and Detach ser-
vices. Concrete observers (derived from Observer)
can use these services to register themselves as lis-
teners for whatever events Subject would later sig-
nal. Whenever it feels like it, the Subject can invoke
NotifyAll and send a burst of calls to all of the reg-
istered Observers.

3 Attaching and Detaching

Generic<Programming> readers have an eye that’s
highly trained to identify sources of variability
and potential customization. Thus, definitely
the linear operations in Subject::Attach and
Subject::Detach must have appeared to you as
obvious as the plot of a Hollywood flick after five
minutes.

In a system where there are few observers and/or
there aren’t many attachments and detachments, a
linear search will do great. If, on the contrary, there
are many observers that are frequently attach to and
detach from subjects, then Subject::Attach and
Subject::Detach can become a bottleneck. In the
latter case, choosing an associative container (tree
or hashtable) keyed on Observer* would be a better
choice.

The meta-design solution is simple: encapsulate
the Container, the obvious setter of the performance
of the subscription process, and Subject::Attach
and Subject::Detach into a separate policy. This
is a textbook application of separating concerns in a

design, and we sure won’t have any problem to en-
capsulate the subscription API into a little policy.

4 “If it looks too simple and el-
egant to be true. . . ”

It all looks so nice and clean, it’s almost a pity to
spoil the pleasure by asking the following simple ques-
tion: what if Attach or Detach are called from within
Update?

The GoF description of the pattern doesn’t dis-
cuss this aspect, and I believe that’s an important
omission. The problem of interleaved registrations
with notifications is a very legitimate one because it
is backed up by a number of real-world situations:

• Say the Subject is a stock market stream, ini-
tially wired to a ticker-tape Observer. When
some stock varies by a large percentage, the
ticker-tape opens a window that tracks that
stock’s price. The window itself would be an
Observer. Hence, a new Observer is being
Attached to its Subject while the Subject no-
tifies another Observer.

• The said windows should close when the mar-
ket closes. And guess what, the “market close”
comes as a notification from the Subject—so
we’re in the situation of calling Detach from
within Update.

The implementation described above uses a vector
for storage, and a straight iteration for event broad-
casting the calls to Observer::Update. So the loop
in Subject::NotifyAll calls Observer::Update,
which calls Subject::Attach, which changes the
vector in the middle of the iteration!

To illustrate the subtlety of the problem, let’s
switch from a std::vector to a std::list. Let’s
pull Subject::NotifyAll’s code again:

void Subject::NotifyAll() {
for (Container::iterator i = data_.begin();

i != data_.end(); ++i) {
(*i)->Update();

}
}

3



The std::list is more stable to changes during
iteration: when removing an element from the list,
only the iterators referring to that element are inval-
idated. The code above remains buggy, however: af-
ter (*i)->Update() returns, the next iteration calls
++i on an invalid iterator. So a better version would
increment the iterator before calling Update:

void Subject::NotifyAll() {
for (Container::iterator i = data_.begin();

i != data_.end(); ) {
(*i++)->Update();

}
}

This version would increment i and return a copy
of the old i, which will be dereferenced and used
to call Update. Of course, the code must be prop-
erly documented because otherwise the maintainer
will sure think “hey, the original author didn’t know
that postincrement is actually slower than preincre-
ment. . . heh, let me fix this real quick.”

But of course the code is not fixed yet; what if
some Observer’s Update function ends up detaching
another Observer, which happens to be next in the
list? We’re back to square one, and the worst part is
that scuh restrictions are very hard to enforce effec-
tively.

A much more solid version is to make a copy of the
container before updating anything:

void Subject::NotifyAll() {
Container d(data_); // make a copy

for (Container::iterator i = d.begin();
i != d.end(); ++i) {

(*i)->Update();
}

}

That’s rock-solid, but has juuust a little wrin-
kle. You could actually label one as “not a bug,
but a feature”—if you detach an Observer object
from within another Observer’s Update, then the de-
tached Observer might still receive a last event even
after having been detached. That’s because the de-
tached Observer is still present in the the snapshot
of the container. Ouch. That makes seemingly in-
nocuous code such as:

void TickerTape::Update() {
Subject * pS = GetSubject();
Observer * p = GetCurrentGraph();
// Untie p from the world

pS->Detach(p);
// p is unlinked, we can delete it

// or... can we?

delete p; // KA-BOOM!!!

}

crash in flames. Again, this is the sort of problems
that is hardest to protect against: the constraints are
hard to document and hard to enforce efficiently.

A solution that is solid as well as efficient is to store
the iterator as a member in the BareboneSubject
class, and then make sure that the Attach and
Detach functions update it properly.

There are even more dimensions on which that
Subject::NotifyAll could be customized. To enu-
merate a few:

• Threading. What level of thread safety does the
Subject/Observer duo offer? Things are not as
simple as locking the Subject inside each pub-
lic functions; indeed, with non-recursive locks,
the system could easily deadlock by asking for
the same lock twice due to recursive mutual
calls among Update, Attach, and Detach. All
of a sudden, the solution that copies the entire
container and then serves notifications from the
snapshot becomes much more attractive.

• Exceptions. The specification of should
clarify whether or not functions overriding
Observer::Update can throw exception, and
what the behavior of Subject::NotifyAll
should be (just let the exception go through? Ig-
nore and finish the burst? Finish the burst but
throw something later?. . . )

• Iteration order. A priority system could be very
useful, especially as an attempt to control active
observation, which is discussed below.

The takeaway of this section is that we better make
the process of subscription and notification a sepa-
rate, configurable part of the planned Observer de-

4



sign so that different implementations featuring dif-
ferent designs can plug into the larger architecture.

5 The Sins of Active Observa-
tion

The example above glossed over how an Observer
could get a hold of the Subject that notified it, hid-
ing the details under the magic function GetSubject
in the example above; it is the time now to dis-
cuss how information is passed from the Subject
to its Observers. This is an actual necessity stem-
ming from the observation (no pun intended) that
one Observer might be listening to several subjects,
all of which will call the same Update function. It
would be necessary, then, for the Observer to figure
out who the caller was.

On the face of it, the solution is simple
and obvious: just change Observer::Update() to
Observer::Update(Subject*). But a more general
question arises: just how much information ought to
be passed from the Subject to its Observers upon
each burst of notifications? The Design Patterns
book discusses the push and the pull model: un-
der the push model the Subject gives its Observers
comprehensive information about exactly what event
happened (in the form of additional arguments to
Observer::Update. On the contrary, in the pull
model the Observers only receive minimal informa-
tion. It is up to them, the Observers, to go back
to the corresponding Subject and “interrogate” it
about what happened. If your typical Observers
track closely events that have a uniform represen-
tation (keystrokes, mouse events, stock name and
price. . . ), then a push model is most appropriate; if,
on the contrary, each of the Observers is focused on
a specific aspect of a Subject with complex events
that are hard to represent uniformly, then the pull
model is the design of choice.

Of course, as often in life, the right path is some-
place in between these two extremes. As an example,
imagine Subject is a complex image to which we at-
tach Observers such as a drawing canvas, image sta-
tistics, a lens. . . In that case, the push model would

advocate passing a lot of information about what
kind of update happened, while the pull model would
just have the drawing say “something happened” and
let the clients ask about the details. A hybrid ap-
proach would have the image notify the clients that
a specific rectangle (push information) has been up-
dated, and the clients would have to get back to the
image and pull the bits of that rectangle.

So far so good. But as soon as the idea of pass-
ing information from the Subject to its Observers, a
strange feeling creeps in: how much of that informa-
tion is actually handles to mutable data that would
allow a reverse information flow—from the Observers
to the Subject? To coin two terms, we distinguish
between passive observation (the observer just in-
spects its subject during a notification cycle) and ac-
tive observation (the observer might change its sub-
ject during a notification cycle).

Active observation introduces a severe long-
distance coupling among various observers connected
to the same subject: the notification order becomes a
veritable food chain in which the first registered ob-
server sees a “fresh,” or better said, freshly changed
subject, and the last observer sees a tarnished sub-
ject, the integral of whatever changes each of the pre-
vious observers have found fit to apply; thus, the be-
havior of the system becomes dependent on what ob-
servers are actually connected, and on the order they
are notified. Now only try to imagine what happens
when during an update some observer changes the
subject by invoking some method, and the subject
notifies again via a burst of Suject::Update calls,
while the current updating cycle hasn’t finished yet!
This kind of inverted flow of control, in which the ob-
servers actually determine what the subject is doing,
is worse than the proverbial tail wagging the dog:
due to the long-distance coupling among observers,
it’s like the neighbor cat’s tail is wagging the dog!

A good start towards a solution is to pass the sub-
ject as a pointer to const:

void Observer::Update(const Subject* p) {
... cannot change *p ...

}

Unfortunately, a good door lock doesn’t help if the
window’s open: in a real program, the Observers

5



might have aliases of the subjects that allow muta-
tion. Such aliasing is not statically tractable (not in
C++, at least) and hard to track even dynamically.
So program correctness is left to two of the least re-
liable teammates: attention and discipline.

6 Conclusion

This article discusses some of the hidden challenges
in defining good Observer designs. So far we’ve iden-
tified some valuable points of customization: the sub-
scription mechanism (attaching and detaching), the
distribution means (notifying all observers about a
change in the subject). We’ve also found some dan-
gers that are hard to protect against: mutual recur-
sion between attachment/detachment and notifica-
tion, as well as active observation.

The next installment of the column will discuss
brokered observation, events and event filtering,
event-centric vs. subject-centric observation, and will
proceed with a policy-based implementation.

References

[1] Andrei Alexandrescu. Modern C++ Design:
Generic Programming and Design Patterns Ap-
plied. Addison-Wesley Longman Publishing Co.,
Inc., 2001. ISBN 0-201-70431-5.

[2] Andrei Alexandrescu. Generic<programming>:
Three µideas. C/C++ Users Journal, February
2005.

[3] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., 1995. ISBN 0-201-
63361-2.

[4] Scott Meyers. Effective STL. Addison-Wesley
Longman Publishing Co., Inc., 2004.

6


