
Lock-Free Data Structures

Andrei Alexandrescu

December 17, 2007

After Generic〈Programming〉 has skipped one in-
stance (it’s quite näıve, I know, to think that grad
school asks for anything less than 100% of one’s
time), there has been an embarrassment of riches as
far as topic candidates for this article go. One topic
candidate was a discussion of constructors, in par-
ticular forwarding constructors, handling exceptions,
and two-stage object construction. One other topic
candidate—and another glimpse into the Yaslander
technology [2]—was creating containers (such as lists,
vectors, or maps) of incomplete types, something that
is possible with the help of an interesting set of tricks,
but not guaranteed by the standard containers.

While both candidates were interesting, they
couldn’t stand a chance against lock-free data struc-
tures, which are all the rage in the multithreaded
programming community. At this year’s PLDI con-
ference (http://www.cs.umd.edu/∼pugh/pldi04/),
Michael Maged presented the world’s first lock-free
memory allocator [7], which surpasses at many tests
other more complex, carefully-designed lock-based al-
locators. This is the most recent of many lock-free
data structures and algorithms that have appeared in
the recent past. . . but let’s start from the beginning.

1 What do you mean, “lock-
free?”

That’s exactly what I would have asked only a while
ago. As the bona-fide mainstream multithreaded pro-
grammer that I was, lock-based multithreaded algo-
rithms were quite familiar to me. In classic lock-
based programming, whenever you need to share
some data, you need to serialize access to it. The

operations that change data must appear as atomic
such that no other thread intervenes to spoil your
data’s invariant. Even a simple operation such as
++count_, where count_ is an integral type, must be
locked as “++” is really a three steps (read, modify,
write) operation that isn’t necessarily atomic.

In short, with lock-based multithreaded program-
ming, you need to make sure that any operation on
shared data that is susceptible to race conditions is
made atomic by locking and unlocking a mutex. On
the bright side, as long as the mutex is locked, you
can perform just about any operation, in confidence
that no other thread will trump on your shared state.

It is exactly this “arbitrary”-ness of what you can
do while a mutex is locked that’s also problematic.
You could, for example, read the keyboard or perform
some slow I/O operation, which means that you delay
any other threads waiting for the same mutex. Worse,
you could decide you want access to some other piece
of shared data and attempt to lock its mutex. If
another thread has already locked that last mutex
and wants access to the first mutex that your threads
already holds, both processes hang faster than you
can say “deadlock.”

Enter lock-free programming. In lock-free pro-
gramming, you can’t do just about anything atom-
ically. There is only a precious small set of things
that you can do atomically, limitation that makes
lock-free programming way harder. (In fact, there
must be around half a dozen of lock-free program-
ming experts around the world, and yours truly is
not among them. With luck, however, this article
will provide you with the basic tools, references, and
enthusiasm to help you become one.) The reward of
such a scarce framework is that you can provide much

1



better guarantees about thread progress and the in-
teraction between threads. But what’s that “small
set of things” that you can do atomically in lock-free
programming? In fact, what would be the minimal
set of atomic primitives that would allow implement-
ing any lock-free algorithm—if there’s such a set?

If you believe that’s a fundamental enough ques-
tion to award a prize to the answerer, so did oth-
ers. In 2003, Maurice Herlihy was awarded the
Edsger W. Dijkstra Prize in Distributed Computing
for his seminal 1991 paper “Wait-Free Synchroniza-
tion” (see http://www.podc.org/dijkstra/2003.
html, which includes a link to the paper, too). In his
tour-de-force paper, Herlihy proves which primitives
are good and which are bad for building lock-free
data structures. That brought some seemingly hot
hardware architectures to instant obsolescence, while
clarifying what synchronization primitives should be
implemented in future hardware.

For example, Herlihy’s paper gave impossiblity
results, showing that atomic operations such as
test-and-set, swap, fetch-and-add, or even atomic
queues (!) are insufficient for properly synchronizing
more than two threads. (That’s quite surprising be-
cause queues with atomic push and pop operations
would seem to provide quite a powerful abstraction.)
On the bright side, Herlihy also gave universality re-
sults, proving that some very simple constructs are
enough for implementing any lock-free algorithm for
any number of threads.

The simplest and most popular universal primi-
tive, and the one that we’ll use throughout, is the
compare-and-swap (CAS) operation:

template <class T>
bool CAS(T* addr, T exp, T val) {
if (*addr == exp) {
*addr = val;
return true;

}
return false;

}

CAS compares the content of a memory address
with an expected value, and if the comparison suc-
ceeds, replaces the content with a new value. The
entire procedure is atomic.

Many modern processors implement CAS or equiv-
alent primitives for different bit lengths (reason for
which we’ve made it a template, assuming an imple-
mentation uses metaprogramming to restrict possible
Ts). As a rule of thumb, the more bits a CAS can
compare-and-swap atomically, the easier it is to im-
plement lock-free data structures with it. Most of to-
day’s 32-bit processors implement 64-bit CAS; for ex-
ample, Intel’s assembler calls it CMPXCHG8 (you gotta
love those assembler mnemonics).

2 A Word of Caution

Usually a C++ article is accompanied by C++ code
snippets and examples. Ideally, that code is standard
C++, and Generic〈Programming〉 strives to live up
to that ideal.

When writing about multithreaded code, giving
standard C++ code samples is simply impossible.
Threads don’t exist in standard C++, and you can’t
code something that doesn’t exist. Therefore, this ar-
ticle’s code is really “pseudocode” and not meant as
standard C++ code meant for portable compilation.

Take memory barriers for example. Real code
would need to be either assembly language transla-
tions of the algorithms described herein, or at least
sprinkle C++ code with some so-called “memory-
barriers”—processor-dependent magic that forces
proper ordering of memory reads and writes. This
article doesn’t want to spread itself too thin by ex-
plaining memory barriers in addition to lock-free data
structures. If you are interested, you may want to
refer to Butenhof’s excellent book [3] or to a short
introduction [6]. For the purposes of this article,
we can just assume that the compiler doesn’t do
funky optimizations (such as eliminating some “re-
dundant” variable reads, a valid optimization under a
single-thread assumption). Technically, that’s called
a “sequentially consistent” model in which reads and
writes are performed in the exact order in which the
source code does them.

2



3 Wait-Free and Lock-Free ver-
sus Locked

To clarify terms, let’s provide a few definitions. A
“wait-free” procedure is one that can complete in a fi-
nite number of steps, regardless of the relative speeds
of other threads.

A “lock-free” procedure guarantees progress of at
least one of the threads executing the procedure.
That means, some threads can be delayed arbitrar-
ily, but it is guaranteed that at least one thread of
all makes progress at each step. Statistically, in a
lock-free procedure, all threads will make progress.

Lock-based programs can’t provide any of the
above guarantees. If any thread is delayed while hold-
ing a lock to a mutex, progress cannot be made by
threads that wait for the same mutex; and in the gen-
eral case, locked algorithms are prey to deadlock—
each waits for a mutex locked by the other—and
livelock—each tries to dodge the other’s locking be-
havior, just like two dudes in the hallway trying to go
past one another but end up doing that social dance
of swinging left and right in synchronicity. We hu-
mans are pretty good at ending that with a laugh;
processors, however, often enjoy doing it til reboot-
ing sets them apart.

Wait-free and lock-free algorithms enjoy more ad-
vantages derived from their definitions:

• Thread-killing immunity: any thread forcefully
killed in the system won’t delay other threads.

• Signal immunity: Traditionally, routines such as
malloc can’t be called during signals or asyn-
chronous interrupts. This is because the inter-
rupt might occur right while the routine holds
some lock. With lock-free routines, there’s no
such problem anymore: threads can freely inter-
leave execution.

• Priority inversion immunity: Priority inversion
occurs when a low-priority thread holds a lock to
a mutex needed by a high-priority thread, case in
which CPU resources must be traded for locking
privileges. This is tricky and must be provided
by the OS kernel. Wait-free and lock-free algo-
rithms are immune to such problems.

Now that introductions have been made, let’s an-
alyze a lock-free implementation of a small design.

4 A Lock-Free WRRM Map

Column writing offers the perk of defining acronyms,
so let’s define WRRM (“Write Rarely Read Many”)
maps as maps that are read a lot more times than
they are mutated. Examples include object facto-
ries [1], many instances of the Observer design pat-
tern [5], mappings of currency names to exchange
rates that are looked up many, many times but are
updated only by a comparatively slow stream, and
various other look-up tables.

WRRM maps can be implemented via std::map
or the post-standard hash_map, but as Modern C++
Design argues, assoc_vector (a sorted vector or
pairs) is a good candidate for WRRM maps because
it trades update speed for lookup speed. Whatever
structure is used, our lock-free aspect is orthogonal
on it; we’ll just call our back-end Map<Key, Value>.
Also, we don’t care about the iteration aspect that
maps provide; we treat the maps as tables that pro-
vide means to lookup a key or update a key-value
pair.

To recap how a “lockful” implementation would
look like, we’d combine a Map object with a Mutex
object like so:

// A lockful implementation of WRRMMap

template <class K, class V>
class WRRMMap {
Mutex mtx_;
Map<K, V> map_;

public:
V Lookup(const K& k) {
Lock lock(mtx_);
return map_[k];

}
void Update(const K& k,

const V& v) {
Lock lock(mtx_);
map_.insert(make_pair(k, v));

}
};

3



Rock-solid—but at a cost. Every lookup locks
and unlocks the Mutex, although (1) parallel lookups
don’t need to interlock, and (2) by the spec, Update
is much less often called than Lookup. Ouch! Let’s
now try to provide a better WRRMMap implementation.

5 Garbage Collector, Where
Are Thou?

Our first shot at implementing a lock-free WRRMMap
rests on the following idea:

• Reads have no locking at all.

• Updates make a copy of the entire map, update
the copy, then try to CAS it with the old map.
While the CAS operation does not succeed, the
copy/update/CAS process is tried again in a loop.

• Because CAS is limited in how many bytes it can
swap, we store the Map as a pointer and not as a
direct member of WRRMMap.

// 1st lock-free implementation of WRRMMap

// Works only if you have GC

template <class K, class V>
class WRRMMap {
Map<K, V>* pMap_;

public:
V Lookup(const K& k) {
// Look, ma, no lock

return (*pMap_)[k];
}
void Update(const K& k,

const V& v) {
Map<K, V>* pNew = 0;
do {
Map<K, V>* pOld = pMap_;
delete pNew;
pNew = new Map<K, V>(*pOld);
pNew->insert(make_pair(k, v));

} while (!CAS(&pMap_, pOld, pNew));
// DON’T delete pMap_;

}
};

It works! In a loop, the Update routine makes a
full-blown copy of the map, adds the new entry to it,
and then attempts to swap the pointers. It is impor-
tant to do CAS and not a simple assignment; other-
wise, the following sequence of events could corrupt
our map:

• Thread A copies the map;

• Thread B copies the map as well and adds an
entry;

• Thread A adds some other entry;

• Thread A replaces the map with its version of the
map—a version that does not contain whatever
B added.

With CAS, things work pretty neatly because each
thread says something like, “assuming the map hasn’t
changed since I last looked at it, copy it. Otherwise,
I’ll start all over again.”

Note that this makes Update lock-free but not
wait-free by our definitions above. If many threads
call Update concurrently, any particular thread might
loop indefinitely, but at all times some thread will be
guaranteed to update the structure successfully, thus
global progress is being made at each step. Luckily,
Lookup is wait-free.

In a garbage-collected environment, we’d be done,
and this article would end in an upbeat note. With-
out garbage collection, however, there is much, much
pain to come (for one thing, you have to read more
of my writing). This is because we cannot simply
dispose the old pMap_ willy-nilly; what if, just as we
are trying to delete it, some many other threads
are frantically looking for things inside pMap_ via the
Lookup function? You see, a garbage collector would
have access to all threads’ data and private stacks; it
would have a good perspective on when the unused
pMap_ pointers aren’t perused anymore, and would
nicely scavenge them. Without a garbage collector,
things get harder. Much harder, actually, and it turns
out that deterministic memory freeing is quite a fun-
damental problem in lock-free data structures.

4



6 Write-Locked WRRM Maps

To understand the viciousness of our adversary, it
is instructive to first try a classic reference-counting
implementation and see where it fails. So, let’s think
of associating a reference count with the pointer to
map, and have WRRMMap store a pointer to the thusly-
formed structure:

template <class K, class V>
class WRRMMap {
typedef std::pair<Map<K, V>*,
unsigned> Data;

Data* pData_;
...

};

Sweet. Now, Lookup increments pData_->second,
searches through the map all it wants, then decre-
ments pData_->second. When the reference count
hits zero, pData_->first can be deleted, and then
so can pData_ itself. Sounds foolproof, except. . .

Except it’s “foolful” (or whatever the antonym to
“foolproof” is). Imagine that right at the time some
thread notices the refcount is zero and proceeds on
deleting pData_, another thread. . . no, better: a bazil-
lion threads have just loaded the moribund pData_
and are about to read through it! No matter how
smart a scheme is, it will hit this fundamental catch-
22: to read the pointer to the data, one needs to
increment a reference count; but the counter must
be part of the data itself, so it can’t be read without
accessing the pointer first. It’s like an electric fence
that has the turn-off button up on top of it: to safely
climb the fence you need to disable it first, but to
disable it you need to climb it.

So let’s think of other ways to delete the old
map properly. One solution would be to wait, then
delete. You see, the old pMap_ objects will be looked
up by less and less threads as processor eons (millisec-
onds) go by; this is because new lookups will use the
new maps; as soon that the lookups that were active
between the CAS finish, the pMap_ is ready to go to
Hades. Therefore, a solution would be to queue up
old pMap_ values to some “boa serpent” thread that,
in a loop, sleeps for, say, 200 milliseconds, then wakes
up and deletes the least recent map, to go back to

sleep for digestion.
This is not a theoretically safe solution (although it

practically could well be within bounds). One nasty
thing is that if, for whatever reason, a lookup thread
is delayed a lot, the boa serpent thread can delete

the map under that thread’s feet. This could be
solved by always assignining the boa serpent thread
a lower priority than any other’s, but as a whole the
solution has a stench with it that is hard to remove.
If you agree with me that it’s hard to defend this
technique with a straight face, let’s move on.

Other solutions [4] rely on an extended DCAS
atomic instruction, which is able to compare-and-
swap two non-contiguous words in memory:

template <class T1, class T2>
bool DCAS(T1* p1, T2* p2,

T1 e1, T2 e2,
T1 v1, T2 v2) {

if (*p1 == e1 && *p2 == e2) {
*p1 = v1; *p2 = v2;
return true;

}
return false;

}

Naturally, the two locations would be the pointer
and the reference count itself. DCAS has been im-
plemented (very inefficiently) by the Motorola 68040
processors, but not by other processors. Because of
that, DCAS-based solutions are considered of primar-
ily theoretical value.

The first shot we’ll take at a solution with deter-
ministic destruction is to rely on the less-demanding
CAS2. As mentioned before, many 32-bit machines
implement a 64-bit CAS, often dubbed as CAS2. (Be-
cause it only operates on contiguous words, CAS2 is
obviously less powerful than DCAS.) For starters, we’ll
store the reference count next to the pointer that it
guards:

template <class K, class V>
class WRRMMap {
typedef std::pair<Map<K, V>*,
unsigned> Data;

Data data_;
...

5



};

(Notice that this time we store the count next to
the pointer that it protects, and this rids us of the
catch-22 problem mentioned earlier. We’ll see the
cost of this setup in a minute.)

Then, we modify Lookup to increment the refer-
ence count before accessing the map, and decrement
it after. In the following code snippets, we will ig-
nore exception safety issues (which can be taken care
of with standard techniques) for the sake of brevity.

V Lookup(const K& k) {
Data old;
Data fresh;
do {
old = data_;
fresh = old;
++fresh.second;

} while (!CAS(&data_, old, fresh));
V temp = (*fresh.first)[k];
do {
old = data_;
fresh = old;
--fresh.second;

} while (!CAS(&data_, old, fresh));
return temp;

}

Finally, Update replaces the map with a new one—
but only in the window of opportunity when the ref-
erence count is 1.

void Update(const K& k,
const V& v) {

Data old;
Data fresh;
old.second = 1;
fresh.first = 0;
fresh.second = 1;
Map<K, V>* last = 0;
do {
old.first = data_.first;
if (last != old.first) {
delete fresh.first;
fresh.first =
new Map<K, V>(old.first);

fresh.first->insert(

make_pair(k, v));
last = old.first;

}
} while (!CAS(&data_, old, fresh));
delete old.first; // whew

}

Here’s how Update works. We have the by-
now-familiar old and fresh variables. But this
time old.second (the count) is never assigned from
data_.second; it is always 1. That means, Update
will loop until it has a window of opportunity of re-
placing a pointer with a counter of 1, with another
pointer having a counter of 1. In plain English, the
loop says “I’ll replace the old map with a new, up-
dated one, and I’ll be on lookout for any other up-
dates of the map, but I’ll only do the replacement
when the reference count of the existing map is one.”
The variable last and its associated code are only
one optimization: avoid rebuilding the map over and
over again if the old map hasn’t been replaced (only
the count).

Neat, huh? Not that much. Update is now locked:
it will need to wait for all Lookups to finish be-
fore it has a chance to update the map. Gone
with the wind are all the nice properties of lock-
free data structures. In particular, it is very easy
to starve Update to death: just look up the map
at a high-enough rate—and the reference count will
never go down to one. So what we really have so
far is not a WRRM (Write-Rarely-Read-Many) map,
but a WRRMBNTM (Write-Rarely-Read-Many-But-
Not-Too-Many) one instead.

7 Conclusions

Lock-free data structures are very promising. They
exhibit good properties with regards to thread killing,
priority inversion, and signal safety. They never
deadlock or livelock. In tests, recent lock-free data
structures surpass their locked counterparts by a
large margin.

However, lock-free programming is tricky espe-
cially with regards to memory deallocation. A
garbage collected environment is a plus because it
has the means to stop and inspect all threads, but if

6



you want deterministic destruction, you need special
support from the hardware or the memory allocator.

The next installment of Generic〈Programming〉
will look into ways to optimize WRRMMap such that
it stays lock-free while performing deterministic de-
struction. And if this installment’s garbage-collected
and WRRMBNTM map dissatisfied you, here’s a
money saver: don’t go watch the movie Alien vs.
Predator, unless you like “so bad it’s funny” movies.

8 Acknowledgments

Many thanks to Krzysztof Machelski who reviewed
the code and prompted two bugs in the implementa-
tion.

References

[1] Andrei Alexandrescu. Modern C++ Design.
Addison-Wesley Longman, 2001.

[2] Andrei Alexandrescu. Generic〈Programming〉:
yasli::vector is on the move. C++ Users Jour-
nal, June 2004.

[3] D.R. Butenhof. Programming with POSIX
Threads. Addison-Wesley, Reading, Massa-
chusetts, USA, 1997.

[4] David L. Detlefs, Paul A. Martin, Mark Moir,
and Guy L. Steele, Jr. Lock-free reference count-
ing. In Proceedings of the twentieth annual ACM
symposium on Principles of distributed comput-
ing, pages 190–199. ACM Press, 2001. ISBN 1-
58113-383-9.

[5] Erich Gamma, Richard Helm, Ralph E. Johnson,
and John Vlissides. Design Patterns. Addison-
Wesley, Reading, MA, 1995.

[6] Scott Meyers and Andrei Alexandrescu. The Per-
ils of Double-Checked Locking. Dr. Dobb’s Jour-
nal, July 2004.

[7] Maged M. Michael. Scalable lock-free dynamic
memory allocation. In Proceedings of the ACM

SIGPLAN 2004 conference on Programming lan-
guage design and implementation, pages 35–46.
ACM Press, 2004. ISBN 1-58113-807-5.

7


