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Last month I’ve been to the Software Development
Conference in Santa Clara, CA. If anything I’ve seen
there is illustrative for the general mood, C++ is
in very good shape. The C++ track has been the
strongest of the conference and the main culprit for
the unexpectedly high attendance (in the 800s). Old
and new projects that use C++ galore, and the pro-
grammer enthusiasm in advanced C++ techniques is
on the rise. (Even I felt jaded in comparison!) Also, I
got word that C++ programmers are the most sought
after, that C++ consultancy requests have suddenly
ramped up, and that C++ books are selling best. I’m
not sure on why that is the case; proponents of other
languages consider C++ and “efficient language” as
opposed to other languages that are dubbed “produc-
tivity languages.” Oh well.

Recently, there’s been a surge of questions and dis-
cussions on the Usenet newsgroup comp.lang.c++.
moderated about using std::vector effectively. It
turns out that std::vector’s current interface and
implementation need some enhancements if we are to
use it as an effective replacement for the built-in ar-
ray, and some more enhancements if we are to use it
multidimensionally (vector of vectors). Such need for
enhancements has also been motivated in past arti-
cles [2] and in Herb’s book [8].

What std::vector cannot do well or at all,
yasli::vector does like a champ. The legendary
YASLI (Yet Another Standard Library Implementa-
tion) is by definition the best implementation of the
C++ standard library around. YASLI uses advanced
C++ implementation techniques, optimizations, and
system and architectural assumptions, to achieve per-
formance numbers that smoke any other implemen-
tation around, and in particular the one you might

be currently using. Unfortunately—and here’s where
the “legendary” bit kicks in—YASLI, developed in
Yasland, is not available to anyone, not even to yours
truly; all we can do here on Earth is to write approxi-
mations of it. This column presents such an approxi-
mation of yasli::vector, explains the rationale and
implementation of each artifact that distinguishes it
from a state-of-the-art std::vector implementation.

1 Mailcontainer

Following my presentations at the aforementioned
conference, there’s been a lot of good feedback. First,
many people liked flex_string[5] a whole lot. Given
that the version published together with the original
article had some bugs, I finally decided to publish
it on my website (http://moderncppdesign.com).
Click on “Code” and you can download the lat-
est and greatest flex_string from there. I’ve also
gotten favorable real-world usage data from Har-
mut Kaizer, who wrote me that in his C++ pre-
processor [7], simply replacing std::string with
flex_string boosted (no pun intended) speed by 5
to 10 percent, depending on input.

2 What they wouldn’t
want you to know about
std::vector

Do you want to know what they don’t want you to
know about std::vector? Do you know why they
are afraid that the truth will escape out one day for
everybody to know?
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I’ll tell you. I’ll tell you now, at the risk of being
kidnapped and confined by them at a secure, top-
secret location right as you are reading this.

The largest problem with std::vector is that it
conflates two different concepts: data moving and
data copying.

Here. I said it.
std::vector is overly generous with copying data

around, when most of the time moving is the way
to go. The untold assumption that the Standard
spelling of std::vector makes is that copying vec-
tor elements around is not a major issue, and is
not part of the asymptotic behavior (it’s tradition-
ally considered O(1)). That makes for nice numbers
on paper, while the situation in the trenches might
not be as bright as it could—and should. There are
ways around that; they are not perfect, but they go a
long way. Part of the solution is to define traits that
give insights into vector’s element type, and also to
use ideas from Mojo [6] which differentiates between
copying and moving. This article sets out to discuss
such issues.

Moving means, I have an object obj at a location
adr and I want to move it to a different address adr1.
Now, there are two variations, depending on the post-
move situation: (1) the old location adr is considered
junk and never read anymore, or (2) the old location
adr is still considered to contain an “empty” object
that might not hold the same state, but is still usable
and will ultimately be destroyed elsewhere. Because
yours truly is an equal-opportunity name-coiner, let’s
call the first version a “destructive” move, and the
second one, well, just a “pure-and-simple” move.

First, let’s motivate again the reasons (already
mentioned in many places [4]) for which a move can
often be less expensive than a copy. Oftentimes, a
class just holds pointers or handles to expensive-to-
duplicate resources, such as large chunks of memory
or OS resources or whatnot. To C++, moving (re-
seating) is not a fundamental operation, and there-
fore std::vector typically implements it as a copy
followed by destruction of the source. During the
copying, resources might be duplicated; but that’s
not needed, because just in the next step, the just-
duplicated resources will be destroyed. Obviously, it
is more efficient to just pass the “baton” from the

source to the destination.

So the central concept is to differentiate between
copying and moving data. However, it’s all in the
details. What my previous articles [2, 3, 4] missed
was that they were focusing on moving data using
memmove. The key questions in implementing typed
buffers was, what conditions does a type have to meet
in order to be moveable by simply copying its bits
by using memmove(&obj, ptr1, sizeof(obj))? In
theory, nothing but Plain Old Data (POD) types can
be moved with memmove. POD types are, roughly
speaking, all the types that would make sense in
C: fundamental types, arrays thereof, and simple
structs without embellishments such as virtuals or
private data. In reality, it turns out that many
types are moveable, but not all. Types that qual-
ify don’t have internal pointers (pointers that point
to addresses inside the object—those would be to-
tally messed if the object is simply memmoved). The
most dangerous internal pointers are those that are
also hidden—data added by the compiler (such as
the pointers added by some compilers in the case of
virtual inheritance). But then again, if we were to
just follow the Standard, moving any fancy class via
memmove is a no-no; the possibility of memmove-ing
classes is based on arguments like “yeah, it’s illegal,
but the compiler would be really crazy to cause any
trouble.”

But focusing on whether or not a type can be
moved with memmove was simply wrong. What the
Yaslanders understood very well was that the real
focus is not to decide on memmoveing, but rather to
define and follow a protocol between vector<T> and
its hosted type T. Then, YASLI defines a default
conservative implementation of the protocol. Any
type that wants to achieve efficiency with vector only
needs to override the default protocol implementation
with the one of choice. In particular, that implemen-
tation could use memmove. If memmove doesn’t work
with a particular class, there still are other efficient
ways (as we’ll see below). It’s that simple.
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3 yasli::vector’s protocol

So, let’s do a bit of analysis: we need to define a
protocol for moving objects that yasli::vector will
use. The protocol should have the following proper-
ties:

1. Genericity. We need the protocol to work for
any type that yasli::vector can ever be in-
stantiated with.

2. Flexibility. We’d like the protocol to be cus-
tomizable so that we can implement it in various
ways for types with various properties.

3. Reasonable defaults. This is an important
point. The protocol must implement a conser-
vative, reasonable default that works for any
type. You don’t want to require anyone using
yasli::vector to define some special function-
ality.

4. Robust. That means the protocol should be easy
to implement and use correctly, and hard to im-
plement and use incorrectly. Robustness is some-
what in tension with reasonable defaults; if you
implement the protocol incorrectly, there is a
risk that the default protocol will be executed
for your type without you realizing it.

Let’s now brainstorm some designs that would
meet the requirements above. The simplest approach
would be to arrange things such that yasli::vector
calls a template function:

// yasli_protocols holds all of

// user-overridable portions of YASLI

namespace yasli_protocols
{
template <class T>
T* destructive_move(

T* begin,
T* end,
void* dest);

}

The charter of destructive_move is to move the
data range [begin, end) to a chunk of memory

pointed to by dest. Then it returns dest, cast to T*
so as to reveal the new type of the destination. Af-
ter the operation has completed, the source range is
considered to be bits, that it, it has lost type—hence
the “destructive” particle in the function name. The
default implementation of destructive_move would
do the conservative thing: copies the data element
by element, and then it destroys each element in the
source. Then, vector would use destructive_move
religiously whenever it comes about moving data
around. The users of vector can define their own
overloads of destructive_move to implement effi-
cient move for their own types.

Unfortunately, this turns out to be a bad design
that fails badly on the flexibility and robustness test.
In fact, it is the route taken by std::swap, with dis-
astruous results. The short version of an explanation
is that relying on function overloading is the wrong
way to go due to the way name lookup works; I’ve
erased all traces of that trauma from my memory,
but you are welcome to read the details [1].

A nicer and more tame way to do things is to rely
on a template class that defines a number of func-
tions. Template classes obey simpler rules with re-
gard to name lookup and instantiation. Here’s how
the declaration of such a protocol would look like:

namespace yasli_protocols
{
// that’s more like it

template <class T>
struct move_traits
{
static T* destructive_move(

T* begin,
T* end,
void* dest);

};
}

Now yasli::vector<T> will use
move_traits<T>::destructive_move when-
ever it comes about moving data around.
Any type that wants can simply specialize
move_traits<T>::destructive_move to per-
form the move in some efficient way. The first
candidates that come to mind would be primitive
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types such as integers or pointers, and here’s how
the specializations would look like:

namespace yasli_protocols
{
template <>
struct move_traits<int>
{
static int* destructive_move(

int* b,
int* e,
void* d)

{
return (int*)memmove(d,
b,
(e - b) * sizeof(int));

}
};
template <class T>
struct move_traits<T*>
{
static T** destructive_move(

T** b,
T** e,
void* d)

{
return (T**)memmove(
d,
b,
(e - b) * sizeof(T*));

}
};

}

The first specialization is a total specialization ap-
plying to int alone, while the second one is a par-
tial specialization that applies to all pointer types.
Nothing special (no pun intended). But there are
two less-than-perfect things about this design. One
is that there’s some duplication creeping up. But hey,
the real code generated is really one line, and if worst
comes to worst, you know that yours truly won’t be
coy about defining a, um, macro. But the more dis-
turbing problem is a feel of a brute-force approach.
We want to implement move_traits in a certain way
for types that have a specific property (are moveable
by using memmove, property that all primitive types

possess). We end up achieving that by implement-
ing move_traits for each type sporting that prop-
erty, and that doesn’t bode well. Later, maybe we’ll
want to implement move_traits in a special way for
all types that implement the Mojo protocol [6], and
that set is simply not enumerable! In other words,
this design is not very good at fulfilling the flexibility
requirement.

Looks like relying on overloading or template spe-
cialization both have shortcomings. Fortunately, al-
though we don’t have full access to the Yaslander
technology, they do have full access to ours. In par-
ticular, they’ve read an article of important impact,
fatefully entitled “Function overloading based on ar-
bitrary properties of types” [?]. That article (highly
recommended) presents a simple template enable_if
that allows one to control when a specific overload
kicks in. This concept is so interesting, and applies
to our needs of defining a protocol so well, it has a
short section of its own (at the cost of plagiarizing)—
but do read the mentioned article for the full story.

4 Controlling Overloading

Several C++ luminaries arrived independently at the
same interesting conclusion: when resolving function
overloading in the presence of templates, the compiler
might try and silently abandon a lot of “dead ends.”
For example:

void transmogrify(unsigned int) { ... }
template <class T>
typename T::result
transmogify(T) { ... }
...
transmogrify(5);

When seeing such code, the compiler gives the sec-
ond overload of transmogrify a chance, by attempt-
ing to instantiate it with int. It doesn’t take a strike
of genius, though, to realize that int::result is not
a type. The interesting bit is that the compiler does
not issue a compile-time error at this point, but in-
stead it just removes the function from the candidates
set. This phenomenon, coined as the Latin-sounding
SFINAE (Substitution Failure Is Not An Error) [9],
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led to a simple technique of controlling overloading.
First, we define a template class enable_if as shown
below:

template <bool B, class T = void>
struct enable_if
{
typedef T type;

};
template <class T>
struct enable_if<false, T> {};

So, enable_if defines type if the compile-time
Boolean value passed is true, or it doesn’t if the
Boolean value passed is false. Now all you have to
do is to use enable_if<expression, T>::type in-
stead of T somewhere in the function signature, and
voilà! The Boolean now controls whether the func-
tion is ever considered or not.

The applicability of this idea to move_traits is
hinted to in the “Future work” part of the mentioned
article, which says:

Matching partial specializations of class
templates is performed with the same set of
rules as function template argument deduc-
tion. This means that a partial specializa-
tion of a class template can only match if
template argument deduction does not fail,
and thus the set of rules we describe in the
background section can be exploited to en-
able and disable class template specializa-
tions. [...] all that is needed is one extra
template parameter with the default value
void. In specializations, this extra parame-
ter is a condition wrapped inside an enabler
template.

5 A Protocol Design

Using enable_if turns out to be a very good strat-
egy for move_traits. This is how the protocol is
declared:

template <class T, class U=void>
struct move_traits
{

static T* destructive_move(
T* begin,
T* end,
void* dest);

};

Now say we want to specialize for all primitive
types, which we can do in a single shot!

template <class T>
struct move_traits<T,
typename enable_if
<!is_class<T>::value>::type>

{
static T* destructive_move(

T* begin,
T* end,
void* dest)

{
return (T**)memmove(
d,
b,
(e - b) * sizeof(T*));

}
};

Unless you’re familiar with Boost’s type traits,
there’s a bit more than a mouthful in the snip-
pet of code above—but nothing you can’t han-
dle. The expression is_class<T>::value is a
compile-time Boolean constant that evaluates
to true if T is a class, that is, not a built-in
type. Conversely, !is_class<T>::value is true

for all built-in types. When you, say, mention
move_traits<float>, the compiler will attempt
to instantiate the more specialized version of
move_traits. That instantiation succeeds, because
typename enable_if<!is_class<float>::value>::type
evaluates to void, and as such takes over.

Next, we can easily customize move_traits for all
classes that implement the Mojo protocol [6]:

template <class T>
struct move_traits<T,
typename enable_if
<is_base_and_derived<mojo::enabled,
T>::value>::type>

{
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...
};

We also can specialize move_traits on its first
argument, say by matching std::complex. Most
of the time, std::complex<T> can be moved using
memmove. The only condition is that the compiler
doesn’t insert some funky additional data with a
complex object (which no compiler I know of does),
condition that can be easily checked with a sizeof

test:

template <class T>
struct move_traits<std::complex<T>,
typename enable_if
<sizeof(std::complex<T>) ==
2 * sizeof(T)>
::type>

{
... use memmove ...

};

To conclude this section, defining a protocol as a
two-parameters template class as shown above and
using enable_if to guide specialization scores good
on all of our requirements.

6 Initialization

Here’s another common request made by
std::vector’s users. Many programmers want
to create an uninitialized vector because, for exam-
ple, they need to fill it with a C-style API function.
There is no way of doing that with std::vector,
and allowing it is tricky because it would create a
type-unsafe hole inside std::vector. What to do?

The approach of yasli::vector is particularly el-
egant in that it offers initialization functions putting
both the responsibility and the accountability in its
user’s hands. Consider, for example, this constructor:

// ... inside yasli::vector ...

template <class F>
void resize_nstd(size_type newSize, F functor);

This nonstandard resizing function resizes the vec-
tor. If the vector grows, resize_nstd doesn’t ini-
tialize the newly added elements; instead, it calls

F(range_begin, range_end), where range_begin
and range_end are pointers pointing to the newly-
added range of elements. If you want to leave them
uninitialized, write a do-nothing function and pass it
in. There’s no better way out of the “who’s respon-
sible and who’s accountable” conundrum.

7 Guarded Assumptions

If you look around yasli::vector’s source code,
you’ll notice a funny-looking piece of code that
is called whenever an empty object of type
yasli::vector is being initialized:

// ...inside yasli::vector...

void init_empty()
{

#if YASLI_UNDEFINED_POINTERS_COPYABLE == 1
end_ = beg_;
eos_ = beg_;

#else

beg_ = 0;
end_ = 0;
eos_ = 0;

#endif

}

The three members beg_, end_, and eos_
are the classic “begin, end, and end-of-storage”
pointers that all implementations of std::vector
hold as members. The interesting bit is the
true branch of the #if-guarded code. If
YASLI_UNDEFINED_POINTERS_COPYABLE is 1, then
the vector is initialized by copying the uninitialized
pointer beg_ to the other two pointers! How can that
be even close to correctness?

The empty state of a vector is that its begin,
end, and end-of-storage pointers have the same
value. However, the actual value of the three point-
ers is irrelevant! The test for emptiness spells
beg_ == end_, not beg_ == 0. Traditionally, the
three pointers are initialized with the singular value
NULL. But on some architectures (such as Intel’s
Pentium family), you can copy and compare for
(in)equality any uninitialized pointers, as long as you
don’t dereference them. Some other processors don’t
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allow such manipulation of uninitialized pointers. On
the former processors, you can get away with initial-
izing a vector with only two assignments instead of
three—a nice 30% speed improvement.

Exploiting uninitialized pointer manipulation
when YASLI_UNDEFINED_POINTERS_COPYABLE is 1 is
a good example of an important piece of Yaslander
technology: guarded assumptions. A guarded as-
sumption is a system-dependent assumption about
the way a hardware-compiler-runtime combo works.
The “guard” is a preprocessor definition; if that de-
finition is absent, then YASLI implements conserva-
tive standard behavior. If the definition is present,
then YASLI is free to exploit that assumption to
achieve better execution speed and/or pack data bet-
ter, with code that invokes undefined behavior ac-
cording the the C++ standard. Other examples
of guarded assumptions—not necessarily present in
vector per se, are:

• YASLI_REALLOC_AFTER_NEW. When this pre-
processor symbol is defined to be 1, then YASLI
will assume that it is safe to call realloc on a
pointer obtained with the global operator new.

• YASLI_STANDARD_OBJECT_LAYOUT. This means
that field are laid out in an “unsurprinsing”
manner—there are no hidden fields and the dec-
laration order is respected.

• YASLI_FLOATS_BITWISE_ZERO. This means that
a floating point value filled with zero bitwise, will
also evaluate to 0.

8 yasli::vector—Standard or
not?

So the important question that arises is, is
yasli::vector compliant with the C++ standard’s
prescription? The answer is either a qualified yes or
a qualified no—depending, of course, on what you
qualify the answer with.

First, if you grep yasli::vector’s header file for
“nstd,” you will find a number of functions and meth-
ods that are, well, not standard, but that ought to

be if std::vector’s interface would allow for a max-
imally efficient implementation. Such an example
is yasli::vector<T>::move_back_nstd(T&), func-
tion that appends an element to the vector by mov-
ing the content of the passed-in object—as opposed
to copying it.

Second, as said, yasli::vector commits to using
the yasli_protocol::move_traits protocol. That,
by default, ensures standard-compliant behavior. If
you provide your own implementation of the proto-
col, of course yasli::vector will use that one and
therefore deviate from the letter of the standard.

So we could say, yasli::vector provides some ad-
ditional functionality that is nonstandard. However,
in doing that, it requires for the cooperation of the
user, either in the form of providing a custom imple-
mentation of yasli_protocol::move_traits, or in
the form of compulsively calling functions that have
“nstd” spelled as part of their name. That makes it
easy for you to make your choices.

9 Conclusions

This article presented an enriched interface and a per-
formant implementation for std::vector. The exist-
ing std::vector is of good quality, but fails to ad-
dress a number of important points, such as memory
friendliness, distinction between moving and copy-
ing, and resizing without initialization. The actual
code, as stolen from the Yaslanders, is available from
http://moderncppdesign.com/code, and your com-
ments on it are welcome.
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