
This installment of Generic<Program-
ming>, coauthored with Dave Held,
takes a short break from the “Smart

Pointers Reloaded” miniseries to discuss
how to analyze the exception safety of a
function. Although my book Modern C++
Design [1] pioneered policy-based smart
pointers, it glossed over the details of figur-
ing out behavior in the presence of excep-
tions thrown by various policy implementa-
tions. To, ahem, its author’s pride, two years
after publication, the only known bug of
SmartPtr (now under the undercover name
smart_ptr) was that it incorrectly managed
resources during construction in the pres-
ence of exceptions. Dave took care of fix-
ing this bug, with much help (in the form of
ideas, suggestions, criticisms, and code) from
the Boost community.

After having a little fun with macros, we
discuss how to analyze a function for
exception safety. We’ll resume the miniseries
in the future, when we’ll apply the exception-
safety analysis to smart_ptr.

Mailcontainer
Rob Mann sent in a nice idea that applies to
the assertions framework described in
Generic<Programming> [2,3]. The idea is
more general though, so it might be of interest
to many people who enjoy defining new and
improved macros.

Macros and C++ have always been in a
codependent relationship—C++ did a lot to
rid itself of macros, yet it still depends on
them in a few key ways. Rob’s macro trick,
when generalized, lets you define a macro
that injects a variable in a yet-to-be-entered
scope. For example:

INJECT_VARIABLE(string, x)
{

... use string variable x here ...
} // x’s scope ends here
// if there’s an outer x defined, its
// scope resumes here

This trick is quite powerful because it lets
macros define variables without the fear of
name clashes. My article on assertions [2]
uses a complicated scheme that generates
variable names by (ab)using __LINE__, with
the caveat that you can’t use the macro twice
on the same line—an unusual requirement
even for seasoned programmers.

The workings of INJECT_VARIABLE are
simple, and many people have “discovered”
it before. There are two to inject a variable—
you can abuse the if statement, or you can
abuse the for statement.

The first way of injecting a variable via a
macro (see [4]) is to use the relatively recent
ability to define a variable in an if test
expression:

if (int x = Fun())
{

... x is defined here ...
}
else
{

... x is defined here (and amounts to
0 upon entering) ...

}
// if there’s an outer x defined, its
// scope resumes here

The x variable exists through the True and
False branches of the if statement. There are
two drawbacks to this trick:

• You can’t define static variables.
• x must be testable and, as such, it must de-

fine an operator bool() or something simi-
lar. If you do define for your type MyType an
operator bool() that always returns False, then
you can inject a variable of your type with a
macro such as:

#define INJECT_VARIABLE(name) \
if (MyType name) ; else

Or, you simply define your macro to start
a for statement that defines the needed
variable. For example:

#define INJECT_VARIABLE(type, name) \
for (type name; ;)

Of course, if you use INJECT_VARIABLE in
this form, you’ll forever execute the statement
that follows it. To make sure you execute the
statement only once, you’d need to wrap the
for loop in an if statement, which defines a
variable to help with execution control:

#define INJECT_VARIABLE(type, name) \
if (bool obfuscatedName = false) ; else \

for (type name; !obfuscatedName;
obfuscatedName = true)

Everything works fine now, with two
requirements on client code. One is that clients
don’t try to use the name obfuscatedName
themselves. (As its name implies, you can
obfuscate that name in any way you wish,
perhaps by using the __LINE__-based trick in
[2]). The other issue is that, by design, the break
and continue statements inside an IN-
JECT_VARIABLE block terminate the block’s
execution, which might be confusing to the
macro’s users. On the efficiency front,
fortunately, your compiler can most likely
optimize-away the two obfuscatedName tests.

An interesting application of INJECT_VARIABLE
is to emulate Java’s synchronized keyword,
which prescribes serial execution for a piece of
code or a function. We assume we have a class
Mutex that implements, well, a mutex, and a
class Lock that automates the locking/unlocking
of a Mutex in a “resource acquisition is
initialization” manner. Then, you can define
the following macro:

#define SYNCHRONIZED \
INJECT_VARIABLE(static Mutex,

obfuscatedMutexName) \
INJECT_VARIABLE(Lock, obfuscatedLockName

(obfuscatedMutexName))
Now you can write:

void Foo()
{

... reentrant code ...
SYNCHRONIZED
{

... nonreentrant code ...
}
... reentrant code ...

}

and be sure that the nonreentrant portion of the
code is always executed in only one thread at a
time. The job of initializing the static Mutex in
a thread-safe manner is left as an exercise to the
reader. (Yes, it is doable; and no, it isn’t trivial.)

40 • C/C++ Users Journal • www.cuj.com • December 2003

Exception
Safety Analysis
Programming is understanding,
and exceptions are no exception

Andrei Alexandrescu and David B. Held

G
en

er
ic

 <
P

ro
g

ra
m

m
in

g
>

Andrei is a graduate student in Computer Science
at the University of Washington and author of
Modern C++ Design. David is a consultant
specializing in custom software development. They
can be contacted at andrei@metalanguage.com
and dheld@codelogicconsulting.com, respectively.

Java also provides a one-argument version of synchronized, which
synchronizes operation on a certain object. You can emulate that Java
construct by defining SYNCHRONIZED_OBJ:

#define SYNCHRONIZED_OBJ(obj) \
INJECT_VARIABLE(Lock, obfuscatedLockName((obj).GetMutex()))

and by using it as follows:

class Widget
{

Mutex myMutex_;
public:

Mutex& GetMutex() { return myMutex; }
...

};
void Foo()
{

Widget widget;
... reentrant code ...
SYNCHRONIZED_OBJ(widget)
{

... widget-synchronized code ...
}
... reentrant code ...

}

Pretty neat. In a more involved implementation, you might want
to protect Mutex’s functions so that only Locks can access your Mutex.

Finally, Java’s synchronized keyword is applicable to entire methods,
such as:

// Java code follows
class Javanilla
{

public void DoSomething() synchronized
{

... this is a nice thread-safe function ...
}
...

}

You might think that emulating this usage of the synchronized
keyword isn’t possible in C++. You might even think—and rightly
so—that you don’t even need that keyword and that you can satisfy all
of your scoped locking needs with the SYNCHRONIZED and SYNCHRONIZED_OBJ
macros. However, as the Greeks might say, the cup of disgrace has no
bottom; people without honor can drink from it without ever emptying
it. You did not hear from me about the following macro:

#define SYNCHRONIZED_METHOD \
try { throw Lock(this->getMutex()); } catch (Lock&)

Now, if you used it like this (but, of course, you’d never use it):

class Widget
{
public:

void DoSomething() SYNCHRONIZED_METHOD
{

... this is a thread-safe function ...
}

}

The SYNCHRONIZED_METHOD macro causes the function to look like
(reformatted):

void DoSomething()

try
{

throw Lock(this->getMutex());
}
catch (Lock&)
{

... this is a nice thread-safe function ...
}

This form is a valid “function-try-block.” It is legal to have a try
statement as the body of the function, without having to include it
inside brackets. This concession is unique to the try statement—
there’s no “function-for-block” or anything similar. That’s why the
only way to inject code into the body of a function from the outside
is to abuse the try statement as shown.

The long and short of SYNCRHONIZED_METHOD is, don’t do it. It’s here
as a curiosity. The good thing to do is to simply synchronize inside
the function by using SYNCHRONIZED_OBJ(*this).

Purity and Exception Safety
Whenever you write a function, you need to have an understanding
of its behavior on exceptional paths and make a statement about that
function’s behavior in the presence of exceptions [5]. That summary
is relevant to your function’s callers. To briefly recap the canonical
exception-safety guarantees, from weakest to strongest [8]:

• The basic guarantee: the invariants of the function’s arguments are pre-
served and no resources are leaked.

• The strong guarantee: the operation has either completed successfully
or thrown an exception, leaving the program state exactly as it was be-
fore the operation started.

• The nothrow guarantee: the operation will not throw an exception.

You should, of course, strive for the strongest guarantee that’s possible
and affordable. There could also be “the wacky guarantee,” which means
that the system is in an undefined state in which you have no idea what
might happen next, so you better call abort ASAP. In spite of the
popularity of the wacky guarantee, we don’t discuss it in depth here.

We felt in need of another characterization of functions: A function
is pure when it doesn’t engender any side effects. Pure functions (not
to be confused with pure virtual functions) are well-known concepts;
in functional languages such as Haskell or ML, all functions are pure,
leading to a stateless model of computation.

Put another way, a pure function does not depend on program state
and does not change the program state in any way. A simple example
is int operator+(int, int). Two ints go in, one int comes out—and
nothing had better change!

Now consider a function Fun that simply calls two other functions
in a row:

void Fun()
{

Gun();
Hun();

}

We set out to analyze the exception-safety level (basic, strong, or
nothrow) of Fun, assuming we already know the exception-safety level
of Gun and Hun.

If both Gun and Hun are nothrow, Fun is nothrow and we’re home
free. If Gun is strong and Hun is nothrow, then Fun is strong. This is

December 2003 • C/C++ Users Journal • www.cuj.com • 41

Andrei Alexandrescu and David B. Held Generic <Programming>

because we have an operation with transactional behavior followed
by an operation that never fails. So if Gun fails, then Fun fails in a
“nothing happened” manner; and if Gun doesn’t fail, Hun never fails
and thus successfully concludes Fun’s execution. This is strong behavior.

Now, what if both Gun and Hun are strong? Well, if Gun succeeds
and Hun throws, then we have a problem. What if Gun already modified
the program state? That would be a state of partial success for Fun,
and so Fun’s exception-safety level decays to…

To what? Basic or wacky? It could be either, really. If Gun and Hun
alter subobjects of a larger object, the intermediate state between Gun’s
success and Hun’s failure might be undefined as far as the larger object’s
invariant is concerned.

However—and here’s where purity comes into play—if Gun is
strong and pure, then Fun stays strong. This is because if Hun fails,
there’s no change in the program state whatsoever, so Fun behaves in
a strong manner just as Hun does.

It’s clear that analyzing the exception safety of a function involves
the purity of the functions that that function calls. But beware; purity
is not absolute (just like in real life, Machiavelli would hasten to add).
Even if impure by construction, Gun can be pure as far as Fun’s analysis
is concerned, as long as it only modifies local automatic variables of
Fun. During execution, Fun can freely modify, directly or via other
function calls, its own automatic variables, without putting its purity
in jeopardy. Here’s an example:
int Sum(int i1, int i2) // silly, but pure
{

std::vector<char> v; // automatic variable

v.push_back(i1); // impure function call
v.push_back(i2); // impure function call
return std::sum(v.begin(), v.end());

}

Note that said function-local data must be automatic—that is, not
preserve state between calls. If you make v in the aforementioned
example static, Sum’s return value depends on previous calls to itself,
which violates the notion of purity.

The important conclusion to drive home from this discussion is
that, to make a sequence of function calls strong, you need to structure
it as a pure subsequence (possibly altering local automatic data),
followed by no more than one strong call, followed by a nothrow
subsequence. This is exactly what the “assignment-through-swap
idiom” [6] does (actually, Dave proved that all strong functions have
this form, but the proof does not fit in the margin of this text).

Gaining Strength
Back to Fun, Gun, and Hun. In certain situations, structuring code in
pure + nothrow subsequences is difficult due to the way Gun and Hun
are implemented. For example, Gun might always manipulate global
state, and you cannot redirect it to write to Fun’s local automatic data.

In that case, the try/catch statement can be used to restore strength:

void Fun()
{

Gun();
try
{

Hun();
}
catch (...)
{

... undo Gun’s effects ...
throw;

}
}

If there’s no way of undoing Gun, you cannot make Fun strong no
matter how hard you try. If Gun throws, Fun’s purity cannot be restored,
and as such, Fun doesn’t have transactional behavior anymore.
Moreover, the undoing code must be nothrow.

This idiom is a workable alternative to sequencing calls, but you
should use it only when you cannot sequence your code as prescribed
in the previous section. It has three drawbacks:

• It is more verbose and does not scale well. You need to add a lot of
code per function call in the sequence.

• It is harder to check, either by hand or automatically. This is because
it’s usually not easy to make sure that the undo operations actually undo
whatever Gun did.

• The generated code might be less efficient with many of today’s compil-
ers (such as Microsoft Visual C++) than code that has no try/catch in sight.

For a solution that does not have the first and third drawbacks, you
may want to refer to the already well-established ScopeGuard [7].

Restoring Invariants
Consider this simple function:

void ReNew(char*& buffer, size_t s)
{

42 • C/C++ Users Journal • www.cuj.com • December 2003

Generic <Programming> Andrei Alexandrescu and David B. Held

delete [] buffer;
buffer = new char[s];

}

Besides resizing buffer, we promise the caller that buffer will
always return valid or null. If you applied what you know so far,
you’d conclude that ReNew offers the basic guarantee. It calls an impure
nothrow function, then a strong function.

However, this is not the case. If new fails by throwing an exception,
then ReNew breaks its promise and leaves buffer with a singular value.
So in reality, you’re dealing with the wacky guarantee.

Thus, when invariants are temporarily broken, you should always use
nothrow calls to restore them. Here are two possible rewrites of ReNew:

// basic guarantee
void ReNew(char*& buffer, size_t s)
{

delete[] buffer;
buffer = 0;
buffer = new char[s];

}
// strong guarantee: uses an automatic local variable
void ReNew(char*& buffer, size_t s)
{

char* temp = new char[s];
delete[] buffer;
buffer = temp;

}

Both versions perform a nothrow operation (in the first case, buffer
= 0; in the second case, buffer = temp) that restores our invariant after
the delete[] operation.

Sheesh! Writing exception-safe code is hard (but so is error handling
in general). You can learn a lot just by staring at two function calls.
Now, we’ll apply our newly found insights to devise a general
algorithm that analyzes the exception safety of any function.

Exception-safety Analysis
We want to create an algorithm that, given a function Fun, returns basic,
strong, or nothrow. This is as hairy as you’d expect—hey, with only
two functions, there was already plenty to think about! We need to
apologize in advance for the dryness and laboriousness of this section,
but we do believe that such an algorithm is useful. We mainly intend
it for “hand-execution,” meaning that it is an aid to a human reader to
figure out the exception safety of a function. A more rigorously defined
version of this algorithm could be devised for automated execution.

This algorithm operates step-by-step on each operation inside Fun
(in the order that a compiler would evaluate them), incrementally
computing its exception-safety level. This means that we need to
handle every statement, including expressions, ifs, fors, switches,
trys, and so on.

The algorithm needs to keep some state during execution:

• safety. The current safety level. We initialize that to nothrow, because
a function that hasn’t done anything can’t throw, either.

• purity. The current purity level. That is initially “pure,” because in
any democratic analysis, a function is considered pure unless proven
to do something impure.

• exception_set. The set of exceptions that Fun might throw (we’ll see
in a moment why that’s needed). We initialize that to the empty set.

December 2003 • C/C++ Users Journal • www.cuj.com • 43

Andrei Alexandrescu and David B. Held Generic <Programming>

• caught_set. The set of expressions that Fun can catch. This set will grow/shrink
as try statements are entered/exited. Initially caught_set is empty.

The “worst state” would be defined as impure and basic. As soon
as we reach this state, the analysis can stop. The “bliss state” is the
initial state, pure and nothrow.

We also define a meet operation, which is the union of two tuples
containing safety, purity, exception_set, caught_set. A meet is
performed whenever you merge two branches of code, such as the
True and False branches of an if statement. The meet operation of
two such tuples consists of: 1. taking the worst purity and safety of
the two tuples; 2. computing the union of the two exception_sets; and
3. computing the intersection of the two caught_sets.

Let’s proceed with the algorithm, written in pseudoC++:

• If the next statement is an if, then recursively apply the algorithm to
analyze the True/False branches. Then merge the results on the two
branches as we just explained.

• If the next statement is a switch, then perform analysis on all branch-
es of the switch, then merge all results.

• If the next statement is a loop (while or for), apply the algorithm itera-
tively to the body of the loop until there is no change in the three state
variables. Usually, this fixed point is reached in one to two iterations. Any
break continues the loop analysis to where that statement passes control.

• If the next statement is a call to a function Gun, then: 1. You need to
see if caught_set catches all of Gun’s exceptions—if that’s the case,
you can consider Gun a nothrow function followed by a series of con-
ditional jumps to the catch handlers; 2. if purity == pure and safety
== nothrow and Gun() is the last expression in Fun, then assign puri-
ty = Purity(Gun) and safety = Safety(Gun), then return; 3. else, if
Purity(Gun) == pure and Safety(Gun) == nothrow, then continue; 4.
else, if Purity(Gun) == impure and Safety(Gun) == nothrow, then as-
sign purity = impure; 5. else, if Safety(Gun) == strong, then:
• If purity == pure then assign safety = min(strong, safety) and

purity = Purity(Gun).
• Else, assign safety = basic: 1. else, if Safety(Gun) ==

basic, then assign purity = Purity(Gun) and safety = basic; 2. in
any case, if the current caught_set catches any of Gun’s exceptions,
you need to meet the result obtained above with the result obtained
on all possible catch blocks inside Fun that Gun’s call might trans-
fer control to.

• If the next statement is a throw, then: 1. if caught_set catches it, then
continue analysis with the appropriate catch handler; 2. else, if puri-
ty == pure, assign safety = strong; otherwise, assign safety = ba-
sic. Also, add whatever exception is thrown to exception_set.

• If the next statement is a try/catch block, then: 1. add all catch han-
dlers to caught_set; 2. analyze the try block—the catch blocks will
be automatically analyzed as a consequence of possible exceptions be-
ing thrown from inside the block; 3. on top of this analysis, use heuris-
tics to see if the catch block(s) restore purity by means of undoing.

• Whatever the statement is, if it writes to variables other than local au-
tomatic variables, assign purity = impure.

• At the exit of each block, check whether destructors are restoring purity.

There would be more to add if the algorithm were to be rigorous,
but for now we wanted to give a good feel for how to perform the
analysis by hand. In essence, you analyze each statement of the

function, progressively changing the current state of the analysis as
you make progress. The algorithm might go down recursively into
blocks for compound statements, such as if, while, or try/catch. For
simplification purposes, we analyze each function in isolation; you
analyze complex expressions by imaginarily calling one function at
a time and storing intermediate results in temporary variables.

Now, the astute reader might notice that our algorithm gives no
way to stumble onto the wacky guarantee. To do so would require
even more state to track invariants and allocated resources in order to
determine when the basic guarantee has been lost or regained. Because
our space is limited, we’re going to leave that exercise for the reader.

At the end of the day, the algorithm returns a useful characterization
of a function: whether it is pure, what its exception-safety level is,
and what exceptions it might throw.

Conclusion
Writing exception-safe code is hard. Analyzing the exception-safety
level of a function is a highly nontrivial and heuristic task. Yet
exception safety is a very important summary of a function, and
making sure your code has defined behavior in the presence of
exceptions is the only way to correctness.

The important things to remember about analyzing exception safety are:

• In a sequence of function calls, you obtain the strong guarantee if you
write your code as a sequence of pure calls, followed by no more than
one strong call, followed by a sequence of nothrow calls.

• Purity is context dependent; you can transform a strong function into
a pure function by having it operate on local automatic data. Note that
pure functions are always strong.

• Alternatively, you can use try/catch with purity restoration in the
catch clause. A variant of that uses ScopeGuard [7] for automatically
restoring purity in case of an exception.

• When the system has broken invariants, always restore them with
nothrow calls.

• To determine a function’s exception-safety behavior, analyze it with
the algorithm in the previous section, having at hand the summaries of
the functions that it invokes.

References
[1] Alexandrescu, Andrei. Modern C++ Design, Addison-Wesley, 2001.
[2] Alexandrescu, Andrei. “Assertions.” CUJ Online Experts, April 2003

(http://www.moderncppdesign.com/publications/cuj-04-2003.html).
[3] Alexandrescu, Andrei and John Torjo. “Enhancing Assertions.” CUJ

Online Experts, August 2003 (http://www.moderncppdesign.com/
publications/cuj-08-2003.html).

[4] Niebler, Eric and Anson Tsao. “FOR_EACH and LOCK,” C/C++
Users Journal, November 2003.

[5] Sutter, Herb. “Exception Safety and Exception Specifications: Are
They Worth It?” Guru of the Week #82 (http://www.gotw.ca/
gotw/082.htm).

[6] Sutter, Herb. “Exception-Safe Class Design, Part 1: Copy Assign-
ment.” Guru of the Week #59 (http://www.gotw.ca/gotw/059.htm).

[7] Alexandrescu, Andrei. “Change the Way You Write Exception-Safe
Code—Forever.” CUJ Online Experts, December 2000 (http://www
.moderncppdesign.com/publications/cuj-12-2000.html).

[8] Abrahams, David. “Exception-Safety in Generic Components.” Boost
(http://www.boost.org/more/generic_exception_safety.html). ❏

44 • C/C++ Users Journal • www.cuj.com • December 2003

Generic <Programming> Andrei Alexandrescu and David B. Held

